We express the realized volatility in terms of the Hurst exponent of the trajectory drawn by the market index. By analyzing distribution, stationarity, and (partial) sample autocorrelation of the estimated paths, and exploiting the empirical law of return to the central value 1/2, we model the dynamics of H(t) (and hence of the volatility) through a fractional Brownian bridge of appropriate parameter H.

Modelling H-Volatility with Fractional Brownian Bridge

Augusto Pianese;Anna Maria Palazzo
2022-01-01

Abstract

We express the realized volatility in terms of the Hurst exponent of the trajectory drawn by the market index. By analyzing distribution, stationarity, and (partial) sample autocorrelation of the estimated paths, and exploiting the empirical law of return to the central value 1/2, we model the dynamics of H(t) (and hence of the volatility) through a fractional Brownian bridge of appropriate parameter H.
2022
978-3-030-99637-6
978-3-030-99638-3
File in questo prodotto:
File Dimensione Formato  
Estratto MAF2022.pdf

solo utenti autorizzati

Descrizione: Contributo in volume
Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 1.04 MB
Formato Adobe PDF
1.04 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/95714
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact