In this Chapter the mechatronic design has been reported for the Ca.U.M.Ha. (Cassino- Underactuated-Multifinger-Hand) robotic hand. In particular, the underactuation concept is addressed by reporting several examples and kinematic synthesis and the mechatronic design have been developed for a finger mechanism of the robotic hand. As a result the Ca.U.M.Ha. robotic hand shows a robust and efficient design, which gives good flexibility and versatility in the grasping operation at low-cost. The kinematic synthesis and optimization of the underactuated finger mechanism of Ca.U.M.Ha. have been formulated and implemented. In particular, two function-generating four-bar linkages and one offset slider-crank mechanism have been synthesized by using the Freudenstein’ equations and optimizing the force transmission, which can be considered as a critical issue because of the large rotation angles of the phalanxes. A closed-loop pressure control system through PWM modulated pneumatic digital valves has been designed and experimentally tested in order to determine and analyze its static and dynamic performances. The proposed and tested closed-loop control system is applied to the Ca.U.M.Ha. robotic hand in order to control the actuating force of the pneumatic cylinders of the articulated fingers. Consequently, a force control of the grasping force has been developed and tested according to a robust and lowcost design of the robotic hand.
Chapter: On the Design of Underactuated Finger Mechanisms for Robotic Hands
REA, Pierluigi
2011-01-01
Abstract
In this Chapter the mechatronic design has been reported for the Ca.U.M.Ha. (Cassino- Underactuated-Multifinger-Hand) robotic hand. In particular, the underactuation concept is addressed by reporting several examples and kinematic synthesis and the mechatronic design have been developed for a finger mechanism of the robotic hand. As a result the Ca.U.M.Ha. robotic hand shows a robust and efficient design, which gives good flexibility and versatility in the grasping operation at low-cost. The kinematic synthesis and optimization of the underactuated finger mechanism of Ca.U.M.Ha. have been formulated and implemented. In particular, two function-generating four-bar linkages and one offset slider-crank mechanism have been synthesized by using the Freudenstein’ equations and optimizing the force transmission, which can be considered as a critical issue because of the large rotation angles of the phalanxes. A closed-loop pressure control system through PWM modulated pneumatic digital valves has been designed and experimentally tested in order to determine and analyze its static and dynamic performances. The proposed and tested closed-loop control system is applied to the Ca.U.M.Ha. robotic hand in order to control the actuating force of the pneumatic cylinders of the articulated fingers. Consequently, a force control of the grasping force has been developed and tested according to a robust and lowcost design of the robotic hand.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.