Shape memory alloys (SMAs) are a wide class of materials characterized by the property to recover the initial shape also after high values of deformations. This is due to the ability of SMAs to change, in a reversible manner, their microstructure from an initial structure, often named austenite, to a final structure, named martensite. The transformations of microstructure can take place with or without one or more intermediate phases, but always without re-crystallization, implying a microstructure changing inside the crystals, without any new boundary creation. The stress-strain behaviour depends on the crystal structures. In this work, a simple model to predict the stress-strain behaviour of a PE SMA has been proposed. The results have been compared to an experimental tensile test carried out on a NiTi SMA alloy.
A constitutive model to predict the pseudo-elastic stress-strain behaviour of SMA
Bellini C.
;
2019-01-01
Abstract
Shape memory alloys (SMAs) are a wide class of materials characterized by the property to recover the initial shape also after high values of deformations. This is due to the ability of SMAs to change, in a reversible manner, their microstructure from an initial structure, often named austenite, to a final structure, named martensite. The transformations of microstructure can take place with or without one or more intermediate phases, but always without re-crystallization, implying a microstructure changing inside the crystals, without any new boundary creation. The stress-strain behaviour depends on the crystal structures. In this work, a simple model to predict the stress-strain behaviour of a PE SMA has been proposed. The results have been compared to an experimental tensile test carried out on a NiTi SMA alloy.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S2452321619304469-main.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
1 MB
Formato
Adobe PDF
|
1 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.