A mechanical equivalent model has been developed to characterize the response of the vehicle excited by road profiles. The mechanical equivalent model offers an estimation of accelerations of vehicle along vertical axis in terms of natural frequencies and dissipative properties of vehicle. The mathematical model considers the differential equations governing the forced vibrations of the MIMO system model (order 4, with two inputs and two outputs) of suspension system. The response of suspension system is evaluated by convolution integral solution for system with general damping. In order to calibrate the mathematical model, an experimental design is developed by the ride test. This test provokes the impact between a vehicle and a rectangular-shaped cleat bar on a road. The least square error evaluates the good agreement between accelerations obtained by mathematical model and ones deduced by experimental investigations.
Vertical Vibrations of the Vehicle Excited by Ride Test
Giorgio Figliolini;Chiara Lanni
2021-01-01
Abstract
A mechanical equivalent model has been developed to characterize the response of the vehicle excited by road profiles. The mechanical equivalent model offers an estimation of accelerations of vehicle along vertical axis in terms of natural frequencies and dissipative properties of vehicle. The mathematical model considers the differential equations governing the forced vibrations of the MIMO system model (order 4, with two inputs and two outputs) of suspension system. The response of suspension system is evaluated by convolution integral solution for system with general damping. In order to calibrate the mathematical model, an experimental design is developed by the ride test. This test provokes the impact between a vehicle and a rectangular-shaped cleat bar on a road. The least square error evaluates the good agreement between accelerations obtained by mathematical model and ones deduced by experimental investigations.File | Dimensione | Formato | |
---|---|---|---|
IPROMM 2020.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
790.71 kB
Formato
Adobe PDF
|
790.71 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.