A common multi-group Redundancy Analysis is introduced, when the reduced space is given by a singular value decomposition of a multivariate best linear predictor. The algorithm finds a nearby OLS fixed-effects estimates by a least squares closed-form solution, provided by the standardized predictor. The empirical predictor is given by an extension of the distribution-free variance least squares method to an iterative multivariate response algorithm.

Joint Redundancy Analysis by a Multivariate Linear Predictor

Renato Salvatore
;
MARCIS, Laura
2020-01-01

Abstract

A common multi-group Redundancy Analysis is introduced, when the reduced space is given by a singular value decomposition of a multivariate best linear predictor. The algorithm finds a nearby OLS fixed-effects estimates by a least squares closed-form solution, provided by the standardized predictor. The empirical predictor is given by an extension of the distribution-free variance least squares method to an iterative multivariate response algorithm.
2020
9788891910776
File in questo prodotto:
File Dimensione Formato  
Pearson-SIS-2020-atti-convegno.pdf

accesso aperto

Descrizione: Contributo in Atti di Convegno
Tipologia: Versione Editoriale (PDF)
Licenza: Dominio pubblico
Dimensione 82.36 MB
Formato Adobe PDF
82.36 MB Adobe PDF Visualizza/Apri
Joint_Redundancy_Analysis_by_a_multivariate_linear_predictor_revised_final.pdf

accesso aperto

Descrizione: Contributo in Atti di Convegno
Tipologia: Versione Editoriale (PDF)
Licenza: Dominio pubblico
Dimensione 309.67 kB
Formato Adobe PDF
309.67 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/84241
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact