A common multi-group Redundancy Analysis is introduced, when the reduced space is given by a singular value decomposition of a multivariate best linear predictor. The algorithm finds a nearby OLS fixed-effects estimates by a least squares closed-form solution, provided by the standardized predictor. The empirical predictor is given by an extension of the distribution-free variance least squares method to an iterative multivariate response algorithm.
Joint Redundancy Analysis by a Multivariate Linear Predictor
Renato Salvatore
;MARCIS, Laura
2020-01-01
Abstract
A common multi-group Redundancy Analysis is introduced, when the reduced space is given by a singular value decomposition of a multivariate best linear predictor. The algorithm finds a nearby OLS fixed-effects estimates by a least squares closed-form solution, provided by the standardized predictor. The empirical predictor is given by an extension of the distribution-free variance least squares method to an iterative multivariate response algorithm.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Pearson-SIS-2020-atti-convegno.pdf
accesso aperto
Descrizione: Contributo in Atti di Convegno
Tipologia:
Versione Editoriale (PDF)
Licenza:
Dominio pubblico
Dimensione
82.36 MB
Formato
Adobe PDF
|
82.36 MB | Adobe PDF | Visualizza/Apri |
Joint_Redundancy_Analysis_by_a_multivariate_linear_predictor_revised_final.pdf
accesso aperto
Descrizione: Contributo in Atti di Convegno
Tipologia:
Versione Editoriale (PDF)
Licenza:
Dominio pubblico
Dimensione
309.67 kB
Formato
Adobe PDF
|
309.67 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.