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Abstract A common multi-group Redundancy Analysis is introduced, when the
reduced space is given by a singular value decomposition of a multivariate best
linear predictor. The algorithm finds a nearby OLS fixed-effects estimates by a least
squares closed-form solution, provided by the standardized predictor. The empirical
predictor is given by an extension of the distribution-free variance least squares
method to an iterative multivariate response algorithm.
Abstract Il lavoro introduce una Analisi di Ridondanza sulla base di gruppi in-

dipendenti, utilizzando la decomposizione ai valori singolari di un predittore lin-

eare multivariato. L’algoritmo fornisce stime di effetti fissi vicini alle stime OLS,

attraverso una soluzione esatta sulla base del predittore standardizzato. La stima

del predittore empirico è basata sull’estensione del metodo ai minimi quadrati della

varianza del modello al caso multivariato, seguendo un approccio iterativo.
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1 Introduction

Redundancy Analysis (RDA) was originally introduced [7] in order to capture the
effects on a reduced space of the linear dependence by a set of criterion variables Y
from a set of predictors X. Partial RDA, constrained RDA and ridge-type regularized
RDA were also introduced, where the goal is substantially of two types: firstly, to
highlight the effects of a subset of some conditioning predictors [2], to remove, and,
secondly, to assess a ridge estimator to reduce the mean squared error of the mul-
tivariate regression by some nearby collinear predictors [6]. Even though the RDA

provides a constrained analysis of the whole linear relations between the two sets
of variables, and an unconstrained analysis given by the set of multivariate regres-
sion residuals, it is straightforward to relate RDA with principal component analysis
(PCA), see for example [4]. One of research issues in the field of the PCA is the si-
multaneous PC-reduction of a set of independent groups of observations, collected
by a multivariate random vector Y ([5],[1]). A general linear mixed model [3] is
usually employed to represent the relationship between the sets of criterion and pre-
dictor variables, when the goal is to predict a specific group (subject) contribution
to the linear dependence. For this reason, a RDA of the predicted criterion variables
by the best linear unbiased predictor at group level may be quite representative into
this contribution. Further, it is also useful to perform RDA of the modeled predicted
data to investigate the “common” groups redundancy on the criterion variables, and
on the multivariate mixed model conditioned residuals. This paper introduces a joint
RDA by a least-squares solution for an optimal fixed-effects estimate from the data
collected by the linear mixed model predictors of the dependent variables. The sin-
gular value decomposition of the resulting linear regression model estimates gives
the best projection in the common reduced subspace of the best unbiased predic-
tor by the whole set of random effects. The application uses an extension to the
multivariate case of the variance least squares algorithm to estimate a variance com-
ponents MANOVA model for data repeated over time.

2 Joint Redundancy Analysis. Estimation of model parameters

Given a q-variate random vector Y, consider the case when Y is partitioned in
n subjects (groups), each of them with ni individuals. We assume that the pop-
ulation model for the n subjects is yi|q×1 = B′q×pxi|p×1 + ai|q×1, where B is the
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matrix of fixed regression coefficients, and ai ∼ N(0,Σa) is a q-variate random
effect. Given a sample of N units (repeated measurements), then the multivari-
ate random effects model assumes the general structure YN×q = X+

N×pBp×q +

Z+
N×nAn×q +EN×q, with X+ the matrix of data covariates, Z+ the design matrix of

random effects, and E the matrix of regression within-subject errors. Further both
Y and X+ are assumed as columnwise centered and standardized. Rewriting the
last model in the vector form, with y∗ = vec(Y), X = (I⊗X+), β = vec(B), Za =

vec(ZA) = (I⊗Z)vec(A), and given for the sake of simplicity a balanced design
(ni = k), the multivariate linear best predictor is given by ỹ∗ = vec(Ỹ) = Xβ̂ +Zã ={

I− (Σa⊗ZZ′)cov(y∗)−1
}

Xβ̂ +(Σa⊗ZZ′)cov(y∗)−1y∗ = Γ y∗+(I−Γ )Xβ̂ .
Here β̂ = β̂gls, Zã = (Σa⊗ZZ′)cov(y∗)−1(y∗−Xβ̂ ), cov(y∗) = (I⊗Z) (Σa⊗

Ik)(I⊗Z′)+cov(vec(E)) = (Σa⊗ZZ′)+(Σe⊗In)⊗Ik, Γ = (Σa⊗ZZ′)cov(y∗)−1.
By standard Redundancy Analysis (RDA), a reduced-rank subspace is given by

a singular value decomposition (SVD) of the multivariate regression predicted val-
ues Ŷ = XB̂ols. To get a reduced subspace by the multivariate linear best predictor
Ỹ, thus we set Ỹ = X+B̂ +ZÃ = UỸ ΛỸ V′

Ỹ
as a possible SVD representation of

the redundant information in the criterion variables, captured by the dispersion ma-
trix Σy∗|X = var(y∗)− cov(y∗,X)var(X)−1cov(X,y∗). Even though a joint-subject
reduction subspace is given by the fixed-effects model estimates Ŷ = XB̂gls, we
are interested in the simultaneous representation of all the predicted ãi’s, given by
a common projection subspace. To do this, we find the matrix of fixed effects B
closest to the fixed B̂ols, by setting the minimum Froebenius norm by the multivari-
ate predictor Ỹ, of the difference z = Ỹ∗∗var(ỹ)−

1
2 −X+(B),Ỹ∗∗ = Ỹ−E(Ỹ) =

Ỹ−1NE[(ỹ|q×1)
′]:‖z‖2 = tr(f′f) =

∥∥∥Ỹ∗∗Σ−
1
2 −X+(B)

∥∥∥2
= min .

Note that var(ỹ)=Σ =E
{
(Ỹ−Y)′(Ỹ−Y)

}
, with (Ỹ−Y)′(Ỹ−Y) the random

matrix of q× q cross products Ỹ′Ỹ given on the basis of the subjects covariances
cov(ỹ∗i −y∗i ) = Xi(covβ̂gls)X′i +Zicov(ãi−ai)Z′i + cov(vec(E)).

Now, setting f = vec(z) = (Σ−
1
2 ⊗ IN)ỹ∗∗− (Iq⊗X+)β = Σ

− 1
2 ỹ∗∗−Xβ , β =

vec(B), Σ
− 1

2 = (Σ−
1
2 ⊗ IN), we come the following properties of β : tr(f′f) =

tr
{
(Σ
− 1

2 ỹ∗∗−Xβ )′(Σ
− 1

2 ỹ∗∗−Xβ )

}
= (ỹ∗∗ −Xβ )′Σ

−1
(ỹ∗∗ −Xβ ), where X =

Σ
1
2 X. Thus, β̂ = (X′Σ−1X)−1X′Σ−1ỹ∗∗ is the q-variate vector in the subspace

spanned by the columns of the matrix X, with ỹ∗∗ orthogonal to the columns of
X in the metric of Σ

−1, ỹ∗∗′Σ−1x = 0. Then, PX = X(X′X)−1X′ is the projection

matrix of the predictor ỹ∗∗ onto the joint subspace by X. The SVD of Ỹ
∗∗

= X+β̂
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gives the common rescaled predictor’s coordinates, U
Ỹ

Λ
Ỹ

V′
Ỹ

, further noticing that

U∗
Ỹ
= ỸV

−1
Λ

Ỹ
contains the row joint reduced coordinates in the space of Ỹ.

In order to avoid distributional assumptions for the multivariate data vector Y, we
introduce an Iterative multivariate Variance Least Squares (IVLS) estimation. The
objective function to minimize is V LS = trace(Ξ −U−D)2, with Ξ|N×N the em-
pirical model covariance matrix. The algorithm is based on alternating least squares
in a two-step iterative optimization process. At every iteration IVLS first fixes U
and solves for D, and following that it fixes D and solves for U. Since LS solution
is unique, in each step the VLS function can either decrease or stay unchanged, but
never increase. Alternating between the two steps iteratively guarantees convergence
only to a local minima, because it ultimately depends on the initial values for U. The
iterations are related to the following steps: a) from the group covariance matrices
U, first minimize V LS to obtain the estimates of D, where Ξ is given by the multi-
variate OLS cross-products of residuals; b) after the estimation of the matrix B̂GLS,
minimize V LS, setting the same error covariance matrix among groups, and c), Iter-
ate a) and b), until convergence to the minimum. The number of iterations may vary
by the choice of the specific model random effects and error covariance matrices.
Applications of the Joint RDA may be related to different types of available data,
and then accommodate a variety of patterned covariance matrices. Further, groups
can be dependent or independent, even in space, time, and space-time correlated
data. The IVLS estimator at each step is unbiased, by the following Lemma.

Lemma (Unbiasedness of the IVLS estimator). Under the balanced p -variate
variance components model Y = XB+ZA+E, with covariance matrix D+U, D =

(I⊗Z)cov(vec(A))(I⊗Z′), U = cov(vec(E)), and known matrix U, for the IVLS

estimator of the parameters θ in D we have E
{

D = D(θ̂IV LS)
}
= D(θ).

3 Application and concluding remarks

Recent national laws reformed the Italian Budget law, provided that the “Benessere
Equo e Sostenibile (BES) - Fair and Sustainable Well-being (FSW)” [8] indi-
cators should contribute to define those economic policies which largely affect
some fundamental dimensions for the quality of life. The Italian Statistical Insti-
tute provide these indicators annually. The Ministry of Finance and Economics
most recent publication is the Budget Law 2019 where it is possible to find the
trend and programmatic forecasts relating to the 12 FSW indicators and the anal-
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ysis of most recent trends, at the levels NUTS2 and NUTS3. We analyze 5 of
the 12 FSW indicators available in the years 2013-2016 (4 time istants), at the
level of NUTS2. The random multivariate vector is partitioned in repeated ob-
servations of the same administrative Region of Italy in the 4 time instants. We
take in consideration a balanced multivariate Mixed MANOVA Model (MMM),
with an AR(1) error stucture: Y|mk×p = X|mk×lB|l×p + Z|mk×pmA|pm×p + E|mk×p,
where p = 5, m = 20, k = t = 4, that is a balanced model, with a random intercept
and an AR(1) error. Then: vec(Y) = (Ip⊗ 1mt)vec(B)+ (Ip⊗Z)vec(A)+ vec(E) ;
y∗ = vec(Y),X∗ = (Ip⊗X) = (Ip⊗1mt), β ∗ = vec(B), Z∗a∗ = (Ip⊗Z)vec(A).

Further we have cov(y∗)= (Ip⊗Im⊗1k)(Σa⊗Im)(Ip⊗Im⊗1′k)+cov(vec(E))=
Σa ⊗ (Im ⊗ 1k1′k) + (Σe ⊗ In)⊗Ω . Finally, after the iterative VLS estimation, the
predictor is given by ỹ∗ = X∗β̂ ∗GLS + Z∗ã∗ = Γ y∗ + (I−Γ )X∗β̂ ∗GLS, Γ = (Σa ⊗
ZZ′)cov(y∗)−1. Note that the matrix Γ specifies both the contribution of the re-
gression model and the observed data to the prediction.

We assume equicorrelation both of the multivariate random effects and the resid-
ual covariance, together with the AR(1) structure of the error:

Σa = σ
2
a ×


1 ρa · · · ρa

ρa 1 · · · ρa
... · · ·

. . .
...

ρa ρa · · · 1


5×5

Σe = σ
2
e ×


1 ρe · · · ρe

ρe 1 · · · ρe
... · · ·

. . .
...

ρe ρe · · · 1


5×5

Ω =
1

1−ρ2
t


1 ρt ρ2

t ρ3
t

ρt 1 ρt ρ2
t

ρ2
t ρt 1 ρt

ρ3
t ρ2

t ρt 1


4×4

Figure 1 reports a comparison between observed and predicted data. Bold lines
refer to predicted loadings and black dots are the predicted scores. Dashed lines and
grey dots come from the standard PCA.

In conclusion, the paper introduces RDA of a multivariate predictor to perform
a common survey of the predicted data, a joint RDA analysis. Given a multivariate
vector with independent groups, and a random effects population model, the joint
RDA relies on the assumption that the linear model itself is able to predict accurately
specific subjects or group representatives, even in time and spatial dependent data.
After using a linear mixed model, the joint RDA explores data that originates in part
from regressive process and in part from the observed, to understand the contribution
to the linear dependence of the observed and of predictions. We suggest the use of
this approach when the research issues are related to the use of model covariates and
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Fig. 1 Multiple Factor Analysis (MFA), observed factor loadings and scores per year (in grey);
predicted loadings and scores (in black).

specific patterned covariance matrices. Further, the impact of choosing the model
structure is easily recognizable when we investigate changes in the data description
by the common factors.
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