This work introduces a Principal Component Analysis of data given by the Best Predictor of a multivariate random vector. The mixed linear model framework offers a comprehensive baseline to get a dimensionality reduction of a variety of random-effects modeled data. Alongside the suitability of using model covariates and specific covariance structures, the method allows the researcher to assess the crucial changes of a set of multivariate vectors from the observed data to the Best Predicted data. The estimation of the parameters is achieved using the extension to the multivariate case of the distribution-free Variance Least Squares method. An application to some Well-being Italian indicators shows the changeover from longitudinal data to the subject-specific best prediction by a random-effects multivariate Analysis of Variance model.
On Predicting Principal Components through Linear Mixed Models
Simona Balzano;Maja Bozic;Laura Marcis;Renato Salvatore
2021-01-01
Abstract
This work introduces a Principal Component Analysis of data given by the Best Predictor of a multivariate random vector. The mixed linear model framework offers a comprehensive baseline to get a dimensionality reduction of a variety of random-effects modeled data. Alongside the suitability of using model covariates and specific covariance structures, the method allows the researcher to assess the crucial changes of a set of multivariate vectors from the observed data to the Best Predicted data. The estimation of the parameters is achieved using the extension to the multivariate case of the distribution-free Variance Least Squares method. An application to some Well-being Italian indicators shows the changeover from longitudinal data to the subject-specific best prediction by a random-effects multivariate Analysis of Variance model.File | Dimensione | Formato | |
---|---|---|---|
cladag2021-book-springer-26-36.pdf
solo utenti autorizzati
Descrizione: Contributo in volume
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
262.06 kB
Formato
Adobe PDF
|
262.06 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.