This work introduces a Principal Component Analysis of data given by the Best Predictor of a multivariate random vector. The mixed linear model framework offers a comprehensive baseline to get a dimensionality reduction of a variety of random-effects modeled data. Alongside the suitability of using model covariates and specific covariance structures, the method allows the researcher to assess the crucial changes of a set of multivariate vectors from the observed data to the Best Predicted data. The estimation of the parameters is achieved using the extension to the multivariate case of the distribution-free Variance Least Squares method. An application to some Well-being Italian indicators shows the changeover from longitudinal data to the subject-specific best prediction by a random-effects multivariate Analysis of Variance model.

On Predicting Principal Components through Linear Mixed Models

Simona Balzano;Maja Bozic;Laura Marcis;Renato Salvatore
2021-01-01

Abstract

This work introduces a Principal Component Analysis of data given by the Best Predictor of a multivariate random vector. The mixed linear model framework offers a comprehensive baseline to get a dimensionality reduction of a variety of random-effects modeled data. Alongside the suitability of using model covariates and specific covariance structures, the method allows the researcher to assess the crucial changes of a set of multivariate vectors from the observed data to the Best Predicted data. The estimation of the parameters is achieved using the extension to the multivariate case of the distribution-free Variance Least Squares method. An application to some Well-being Italian indicators shows the changeover from longitudinal data to the subject-specific best prediction by a random-effects multivariate Analysis of Variance model.
2021
978-3-030-69943-7
File in questo prodotto:
File Dimensione Formato  
cladag2021-book-springer-26-36.pdf

solo utenti autorizzati

Descrizione: Contributo in volume
Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 262.06 kB
Formato Adobe PDF
262.06 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/79399
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact