This Thesis proposes the use of the Dirichlet-to-Neumann (DtN) operator to improve the accuracy and the efficiency of the numerical solution of an electromagnetic scattering problem, described in terms of a differential formulation. From a general perspective, the DtN operator provides the “connection” (the mapping) between the Dirichlet and the Neumann data onto a proper closed surface. This allows truncation of the computational domain when treating a scattering problem in an unbounded media. Moreover, the DtN operator provides an exact boundary condition, in contrast to other methods such as Perfectly Matching Layer (PML) or Absorbing Boundary Conditions (ABC). In addition, when the surface where the DtN is introduced has a canonical shape, as in the present contribution, the DtN operator can be computed analytically. This thesis is focused on a 2D geometry under TM illumination. The numerical model combines a differential formulation with the DtN operator defined onto a canonical surface where it can be computed analytically. Test cases demonstrate the accuracy and the computational advantage of the proposed technique.
Differential Formulation coupled to the Dirichlet-to-Neumann operator for scattering problems / Perrotta, Antea. - (2020 May 13).
Differential Formulation coupled to the Dirichlet-to-Neumann operator for scattering problems
PERROTTA, Antea
2020-05-13
Abstract
This Thesis proposes the use of the Dirichlet-to-Neumann (DtN) operator to improve the accuracy and the efficiency of the numerical solution of an electromagnetic scattering problem, described in terms of a differential formulation. From a general perspective, the DtN operator provides the “connection” (the mapping) between the Dirichlet and the Neumann data onto a proper closed surface. This allows truncation of the computational domain when treating a scattering problem in an unbounded media. Moreover, the DtN operator provides an exact boundary condition, in contrast to other methods such as Perfectly Matching Layer (PML) or Absorbing Boundary Conditions (ABC). In addition, when the surface where the DtN is introduced has a canonical shape, as in the present contribution, the DtN operator can be computed analytically. This thesis is focused on a 2D geometry under TM illumination. The numerical model combines a differential formulation with the DtN operator defined onto a canonical surface where it can be computed analytically. Test cases demonstrate the accuracy and the computational advantage of the proposed technique.File | Dimensione | Formato | |
---|---|---|---|
Tesi_dottorato_Unicas_32_PERROTTA_Antea.pdf
accesso aperto
Tipologia:
Tesi di dottorato
Licenza:
Creative commons
Dimensione
1.98 MB
Formato
Adobe PDF
|
1.98 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.