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INTRODUCTION

Interaction of electromagnetic fields with matter arises in many low- and high-frequency

applications. Examples are Inverse Scattering Problems, Optimization, Electromagnetic

Compatibility (EMC), Antenna Design, etc. In this Thesis a special focus is given to the

development of an efficient (i.e. accurate and fast) numerical method for EM scatter-

ing. Then, this ”tool” can be used as an essential building block for the aforementioned

applications.

As it is well known, the electromagnetic scattering from conducting and/or dielectric

objects hit by an e.m. wave can be studied using either integral [1]-[2] or differential

formulations [3]-[4]. The former are based on Maxwell equations expressed in terms of

integral equations. Often the unknown is a proper equivalent source. The latter are based

on the “classical” Maxwell equations expressed in term of a system of Partial Differential

Equations (PDE). This Thesis is in the framework of differential formulations.

Differential formulations are very attractive because they lead to numerical models

characterized by sparse matrices, easier to be stored and inverted. On the contrary, in-

tegral formulations involve the treatment of fully-populated matrices. However, integral

formulations require to discretize only the material regions, whereas differential formu-

lations require to discretize the computational domain entirely. This is an issue when

dealing with a problem in an unbounded domain such as a plane, half-plane, etc. In this

case, it is mandatory to “truncate” the computational domain at a proper distance from the

scatterer. This calls for a proper treatment of the artificial boundary where the truncation

of the computational domain has been carried out.

The truncation of the computational domain in differential formulations (for instance,

based on FE or FDTD methods) requires a proper treatment, otherwise significant numer-

ical errors may affect the numerical solution. Spurious reflections of waves from the arti-

ficial boundary have to be avoided. To this purpose, in the last decades several approaches

have been proposed. They can be classified in two main strategies: non-reflective bound-

ary conditions and non-reflective boundary layers. In the first approach, known as the

“classical” Absorbing Boundary Conditions (ABC), e.g. [5], the impinging waves are

absorbed on the artificial boundary thanks to proper boundary conditions. In the second

approach, the waves are absorbed by an artificial layer, as for the Perfectly Matched Layer
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(PML), e.g., [6]. A comprehensive review of methods derived from ABC may be found

in [7]-[8], where low- and high-order non-reflecting boundary conditions are presented.

In [9], [10], [11], [12], [13], [14] it is possible to find a review of methods based on PML.

The absorbing conditions are extremely efficient only if the artificial boundary is placed

in the far-field region. To overcome this problem was introduced the adaptive absorb-

ing boundary conditions [15] that can be placed close to the scatterer but depend on the

shape and the material of the scatterer. Performances of ABC depends significantly on

the incidence angle of the field on the boundary. Waves are absorbed when orthogonal

to the artificial boundary. This is not the case for PML which is efficient also for non-

orthogonal incidence. We mention that the original PML approach proposed by Berger

was transformed in an anisotropic PML by [16] thus reducing the distance between the

scatterer and the artificial layer. However, the PML involves in the solution domain the

addition of the external absorbing layer, which increases the computational burden.

An alternative approach is based on the so-called Dirichlet-to-Neumann (DtN) op-

erator. This is a proper operator which relates the Dirichlet data on the boundary to the

Neumann data, on the boundary. In this way it is possible to decouple the “inner” problem

(defined inside the computational domain) from the “outer” problem (defined outside the

computational domain). The DtN operator provides an exact boundary condition which

can be imposed onto the artificial boundary. This allows to place the artificial boundary

close to the scatterer, therefore reducing the size of the computational domain and, ulti-

mately, the computational cost. A DtN based formulation has been originally proposed

for different wave propagation problems in , such as acoustic and electromagnetics [17]-

[18]. Then, it has been used for several electromagnetic scattering problems, such as

for periodic arrays [19], waveguides [20], photonic crystals [21], and more recently in

passive composite materials [22]. Recently, it has been adopted for scattering problems

applied to conducting cylinders [23]. An extension to multiple scattering problems is also

provided in [24]. The DtN operator can be computed in analytical form only for domains

with canonical geometries. For instance, the exact DtN operator for spherical boundaries

has been derived in [25]. Although the DtN operator can be computed numerically for

boundaries of arbitrary shape, an analytical form of the DtN operator offers some advan-

tages. Among them we mention the possibility of controlling the accuracy by properly
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truncating a series expansion. Moreover, it entails the possibility of factorizing the DtN

operator, as firstly proposed in this thesis. This latter option is essential in view of a rele-

vant improving of the computational cost and efficiency and in view of the application of

the DtN operator for internal problems, as required by scatterers with cavities. Also, we

highlight that the DtN operator is a non-local operator that, when expressed in analytical

form, does not require the evaluation of singular kernels.

In this Thesis, the DtN approach is used to analyze a 2D scattering problem where a

dielectric object is hit by an external time-harmonic electromagnetic field. The efficiency

of the DtN based approach is compared to state-of-the-art PML. The comparison proves

the superior performances of the DtN based approach. In this Thesis we integrate the

DtN operator within a finite element method applied to the 2D wave equation. Despite

the simplicity of the geometry, this numerical model is capable of handling TMz and TEz

illuminations, in the presence of z-invariant dielectric and/or magnetic materials. These

materials can also be anisotropic. Also, we highlight that the proposed numerical model

is capable of treating either homogeneous or non-homogeneous objects. The first original

contribution of this Thesis, with respect to the current state-of-the-art, consists in propos-

ing an analytical sparsification of the DtN operator. This sparsification is of paramount

importance because the DtN operator is represented in discrete form by a fully popu-

lated matrix with a low/moderate rank. The sparsification allows to reduce significantly

the computational cost arising from imposing the boundary condition through the DtN

operator. In this Thesis two different sparsifications are proposed: one is based on the

analytical form of the series representing the DtN operator, the other of the Fast Fourier

Transform (FFT). Another original contribution of this work is the introduction of the

Internal DtN operator. This is a straightforward generalization of the DtN approach to

problems with cavities, as in the case of tubes. The goal is avoiding the discretization

of cavities in a material. This can be carried out by impose the boundary condition on

the boundary of the cavity internal by means of the Internal DtN operator. In this case

we found that the aforementioned sparsification is mandatory to reduce the computational

cost with respect to a traditional FEM where the cavity is part of the discretization. The

last original contribution of this Thesis is the extension of the approach to anisotropic, but

z-invariant, materials under the TMz or TEz illumination. It is worth noting that these
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electromagnetic scattering problems can be treated by means of the DtN operator for the

scalar case.

The Thesis is organized as follows. In Chapter 1 a state-of-the-art on major differen-

tial formulations used to solve the scattering problem when the domain is closed by an

artificial boundary is described. In Chapter 2 we derive the DtN operator for the scalar

Helmholtz equation in 2D. Specifically, we briefly summarize the derivation of the DtN

operator for the exterior problem, as introduced in past work by other authors and, then,

we propose the DtN operator for the interior problem (cavities). In both cases the shape

of the boundary is circular so that the DtN operator can be expressed in analytical form.

In Chapter 3, we treat the electromagnetic scattering from z-invariant material, possibly

anisotropic, in both the TMz and TEz cases. In Chapter 4 the numerical implementation

of the method proposed is described. Moreover, in this Chapter is addressed the problem

of the sparsification of the DtN operators by means of an analytical factorization and the

Fast Fourier Transform. Eventually, in Chapter 5 three case studies are described and

discussed. The first is a benchmark case to evaluate and compare the performances of the

proposed approach. Specifically, the scattering from a circular cylinder is modelled with

both the DtN and PML based approaches, and compared against the analytical solution.

When considering an iterative solver, the DtN approach is superior to the PML both in

term of number of multiplications per iteration and in term of a better condition number.

The second case refers to the electromagnetic scattering from a PVC tube. This case is

relevant to prove the effectiveness of the numerical model combined with the Internal DtN

operator. In the third case, a bundle cable is considered. This is a real-world case in the

framework of electromagnetic compatibility (EMC). Specifically, the goal was to predict

the near field.
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Chapter 1

ELECTROMAGNETIC

SCATTERING

In this chapter the scattering problem will be introduced, starting with electromagnetism

fundamental equations, best known as Maxwell equations. Then a brief state-of-the-art

about the techniques to solve the scattering problem with the differential formulation is

reported. In the last section the ABC and PML techniques will be briefly described.

1.1 Maxwell’s equation

The mathematical model for the electromagnetic fields can be obtained from a set of

three-dimensional partial differential equations called Maxwell’s equations.

Let E(r, t) be the electric field, J(r, t) the current density,D(r, t) the electric dis-

placement field, ρ(r, t) the free electric charge density, B(r, t) the magnetic flux density

and H(r, t) the magnetic field at a point r ∈ R3. The Maxwell equations in differential

form are:

Gauss’s law—The divergence of displacement flux density is equal to the charge

density, that is,

∇·D = ρ+ ρ0 (1.1)

where ρ is the charge density from conduction and ρ0 is the source charge density.

Gauss’s law for magnetism—The divergence of the magnetic flux density is equal to
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zero, that is,

∇·B = 0 (1.2)

Faraday’s law of induction—The curl of the electric field intensity is equal to the

negative of the time derivative of the magnetic flux density, that is

∇×E = −∂B
∂t

(1.3)

Ampere’s law—The curl of the magnetic field intensity is equal to the sum of the

current density due to flow of charges and the displacement current density, which is the

time derivative of the displacement flux density, that is,

∇×H =
∂D

∂t
+ J + J0 (1.4)

where J0 is the prescribed source and

∇·J0 +
∂ρ0

∂t
= 0 (1.5)

In addition, Ohm’s law implies that:

J = σE (1.6)

where σ(r, t) is the conductivity. Also, we recall that

D = εE (1.7)

B = µH (1.8)

Auxiliary to (1.2)–(1.3), the continuity equation is given by

∇·J +
∂ρ

∂t
= 0 (1.9)

This equation, which is the differential form of the law of conservation of charge, states

that the sum of the divergence of the current density due to flow of charges and the time

derivative of the charge density is equal to zero. Maxwell’s equations simplify consid-

erably in the case of harmonic time dependence. Through the inverse Fourier transform,

general solutions of Maxwell’s equation can be built as linear combinations of single-

frequency solutions:

E(r, t) =
1

2π

∫ +∞

−∞
E(r, ω)ejωtdω (1.10)



1.1. Maxwell’s equation 19

hereafter we assume that all fields have a time dependence ejωt.

Replacing time derivatives as ∂t −→ ω, we may rewrite the Maxwell’s equation in

the form:

∇·D = ρ+ ρ0 (1.11)

∇·B = 0 (1.12)

∇×E = −ωB (1.13)

∇×H = ωD + J + J0 (1.14)

In order to simplify, the same symbols of electromagnetic fields in time domain have been

used in frequency domain. The meaning is clear by the context.

1.1.1 Constitutive relations

Equations (1.11)-(1.14) must be coupled to two constitutive laws that relate E and H to

D andB. These laws depend on the properties of the matter.

1. Vacuum or free space. In the free space the fields are related by the equations:

D = ε0E and B = µ0H (1.15)

where the costant ε0 and µ0 are the electric permittivity and magnetic permeability,

respectively. The values of ε0 and µ0 are in the SI system.

ε0 = 8.854 187× 10−12 Fm−1 µ0 = 4π × 10−7 Hm−1 (1.16)

2. Inhomogeneous, local isotropic material. If the material properties do not depend

on the direction of the field and the material is linear, we have.

D = εE and B = µH (1.17)

where ε and µ are positive and scalar functions.
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3. Inhomogeneous, anisotropic material. In some materials the electric or magnetic

properties of the constituent materials depends on the direction of the field. In such

cases ε and µ are 3×3 tensor field.

In the case of ohmic conductors, we have

J = σE (1.18)

where σ is the conductivity of the materials. Using the linear inhomogeneous con-

stitutive equations in (1.17) and the constitutive relation for the current in (1.18) we

obtain the Maxwell equation in following form:

∇·εE = ρ (1.19)

∇·µH = 0 (1.20)

∇×E = −ωµH (1.21)

∇×H = ωεE + σE (1.22)

When σ > 0 the region is called conductor, if σ = 0 and ε 6= ε0 the material

is termed a dielectric, and ε is referred to as the dielectric constant. In a vacuum

σ = 0, ε = ε0 and µ = µ0.

Defining the complex relative permittivity and permeability by

εr =
1

ε0

(
ε+ 

σ

ω

)
and µr =

µ

µ0

(1.23)

noting that εr = µr = 1 in vacuum, we can rewrite the Maxwell’s equations as

follows:

∇×E = −ωµ0µrH (1.24a)

∇×H = ωε0εrE + J (1.24b)

∇·(µrH) = 0 (1.24c)

∇·(εrE) = ρ (1.24d)

1.1.2 Interfaces condition

Equations (1.24) are not complete at interfaces between different materials, where either

µr or εr are discontinuous.
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Let us consider the case of two media with different relative permittivity and permeability,

separated by a surface S, and let ν a normal unit vector from region 2 to region 1, as shown

in Figure 1.1.

Figure 1.1: Case of two media with different electric e magnetic properties

When an electromagnetic field faces an abrupt change in the permittivity and per-

meability, certain continuity conditions on electric and magnetic fields on the interface

have to be imposed. These continuity conditions are known as the interface conditions

for the electromagnetic field. As shown in the Figure 1.1, if E1 is the electric field from

region 1 and E2 electric field from region 2. From equation (1.24a) we must have that the

tangential component of the electric field to be continuous across S, i.e.,

ν × (E1 − E2) = 0 on S (1.25)

Similarly to (1.24b) for the normal magnetic field we have

ν × (H1 −H2) = Js on S (1.26)

where Js is a surface current density on surface S. From equation (1.24c) we must have

the normal component of the magnetic flux density to be continuous across S, i.e:

ν · (µr,1H1 − µr,2H2) = 0 on S. (1.27)

Similarly to (1.24d) for the normal flux density we have:

ν · (εr,1E1 − εr,2E2) = ρs on S (1.28)

where ρs is the charge density on surface S.
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1.2 State of art of numerical methods for scattering prob-

lems

In this section, a brief state of the art about the solution of differential formulations when

truncating the computational domain with boundary conditions is reported. When solving

the scattering problem by means of differential formulations (for instance, FE or FDTD

methods), it is necessary to introduce artificial boundary to limit the numerical solution

to a bounded domain. Non-reflecting conditions must be imposed to avoid spurious re-

flections of waves from this artificial boundary, proper non-reflecting conditions must be

imposed. To this purpose, several approaches have been proposed in the last decades

that can be classified into two main types: non-reflective boundary conditions and non-

reflective boundary layers. In the first approach, the impinging waves are absorbed by the

artificial boundary, as for instance the classical Absorbing Boundary Conditions (ABC),

e.g., [18], [26]. In the second approach, the waves are absorbed by a layer, as in the case

of the Perfectly Matched Layer (PML), e.g., [6].

1.2.1 Absorbing Boundary Conditions

Whenever one solves a PDE numerically starting from differential formulations by a vol-

ume discretization, one must truncate the computational domain in some way, and the

key question is how to perform this truncation without introducing significant artifacts

into the computation. Some problems are naturally truncated, e.g. for periodic structures

where periodic boundary conditions can be applied. Some problems involve solutions that

are rapidly decaying in space, so that the truncation is irrelevant as long as the computa-

tional domain is large enough. However, some of the most difficult problems to truncate

involve wave equations, where the solutions are oscillating and typically decay with dis-

tance r as 1/r(d−1)/2 in d dimensions. The slow decay means that by simply truncating

the grid with hard-wall (Dirichlet or Neumann) or by periodic boundary conditions will

lead to unacceptable artifacts from boundary reflections. The oscillation means that any

real coordinate remapping from an infinite to a finite domain will result in solutions that

oscillate infinitely fast as the boundary is approached such fast oscillations cannot be rep-

resented by any finite-resolution grid, and will instead effectively form a reflecting hard
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wall. Therefore, wave equations require something different: an absorbing boundary that

will somehow absorb waves that strike it, without reflecting them, and without requiring

infeasible resolution.The first attempts at such absorbing boundaries for wave equations

involved absorbing boundary conditions (ABCs) [18], [26].Given a solution on a discrete

grid, a boundary condition is a rule to set the value at the edge of the grid. An ABC

tries to somehow extrapolate from the interior grid points to the edge grid point(s), to

fool the solution into “thinking” that it extends forever with no boundary. It turns out

that this can be done perfectly in one dimension, where waves can only propagate in two

directions. However, the main interest for numerical simulation lies, in two and three

dimensions [27], [28], and in these cases the infinite number of possible propagation di-

rections makes the ABC problem much harder. It seems unlikely that any other efficient

method exists that can exactly absorb radiating waves that strike a boundary at any pos-

sible angle. Existing ABCs restrict themselves to absorbing waves exactly only at a few

angles, especially at normal incidence. Another difficulty is that many standard ABCs are

formulated only for homogeneous materials at the boundaries [29], [30], and may even

become numerically unstable if the grid boundaries are inhomogeneous.

1.2.2 Perfect Matched Layer

In 1994, however, the problem of the absorbing boundaries in wave equations was ana-

lyzed in a different way in a seminal paper by Berenger, where he introduced for the first

time the concept of ”perfect matched layer” [6]. Berenger changed the absorbing bound-

ary condition, with the introduction of an absorbing boundary layer, as shown in Figure

1.2.

An absorbing boundary layer is a layer of artificial absorbing material that is placed

adjacent to the boundary of the computational domain. When a wave enters the absorbing

layer, it is attenuated by the absorption and decays exponentially; even if it reflects off

the boundary, the returning wave after one round trip through the absorbing layer is expo-

nentially small. The problem with this approach is that, whenever you have a transition

from one material to another, waves generally reflect. However, Berenger demonstrated

that a special absorbing medium could be constructed so that waves do not reflect at the

interface: a perfectly matched layer, or PML. In this case, an external layer of thickness δ
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(a) (b)

Figure 1.2: (a) Schematic of a typical wave-equation problem, where a finite interest

region has sources from which some radiative waves escape to infinity. (b) The same

problem, where space has been truncated to some computational region. An absorbing

layer is placed adjacent to the edges of the computational region—a perfect absorbing

layer would absorb outgoing wave without reflections from the edge of the absorber.
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is added to the boundary, where the propagating waves are attenuated as:

e(ωt−kr)−
k
ω

∫ δ
0 σ(r

′
)dr
′

(1.29)

where σ > 0 is the conductivity function of the distance.

1.2.3 Dirichlet-to-Neumann transformation

The absorbing conditions are extremely efficient if the artificial boundary is placed in the

far-field region, whereas their computational burden increases if placed in the near-field

region, where the field is characterized also by the presence of evanescent waves. In

general, for a fixed accuracy the computational cost of a near field simulation increases

when the boundary is placed closer to the scatterer. An alternative approach is based on

the so-called Dirichlet-to-Neumann (DtN) operator, where exact boundary conditions can

be imposed on a closest boundary of the solution domain, even when located in proxim-

ity of the scatterer, reducing the solution domain to be meshed. This approach has been

originally proposed for different wave problems, like acoustic [31]-[32], optical [33] and

electromagnetics [34]. Then, it has been used for several electromagnetic scattering prob-

lems, such as periodic arrays [19], in waveguides [20], in transmission line [35] and more

recently in passive composite materials [22]. An extension of the use of the DtN operator

is also provided for analyzing photonic crystals through numerical methods [36], [21],

[37] or for photonic bandgap calculations [38], [39], [40].

In addition the DtN operator condition can be derived for the numerical solution of

time-harmonic multiple scattering problems, where the scatterer consists of several dis-

joint components.It is obtained by combining contributions from multiple purely outgoing

wave fields. In [24] has been demonstrated that the DtN condition for multiple scattering

is as accurate as the well-known DtN condition for single scattering problems.

In recent years the DtN operator has been successfully applied to many different prob-

lems. Among them we mention applications to inverse problems for elliptic wave propa-

gation [41], to efficiently extract the capacitance, resistance and inductance of multicon-

ductor transmission lines [42], to characterize the interconnect structures [43] and also

for the water-wave problems [44],[45]. Eventually, we mention that the DtN operator has
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been introduced also for 3D eddy currents computation in the magneto-quasi-static limit

[46].



Chapter 2

DIRICHLET-TO-NEUMANN

OPERATOR

This chapter focuses on a differential formulation coupled to the Dirichlet-to-Neumann

operator to solve a scattering problem by arbitrarily shaped objects. From a general per-

spective, the DtN operator provides the “connection” (the mapping) between Dirichlet

and Neumann data onto a properly closed surface. In this way, exact boundary conditions

may be imposed on the boundary of the solution domain, even when located in proxim-

ity of the scatterer. Such operator allows to truncate the computational domain from an

infinite one to a finite one. Specifically, it provides an exact boundary condition on the

boundary of the computational domain thus allowing this boundary to be placed in close

proximity of the scatterer to reduce the computational cost.

This approach has been originally proposed for acoustic problems [32] and for several

electromagnetic scattering problems, such as for periodic arrays [19], waveguides [20],

photonic crystals [21], and more recently passive composite materials [22].

In the first part of the chapter a 2D scalar scattering problem coupled to the Dirichlet-

to-Neumann operator is considered. The mathematical model is given in terms of a weak

form. This weak form will be then (see Chapter 4) translated in discrete terms through

the Finite Elements Method.

In the second part of the chapter we introduce the DtN operator for the internal prob-

lem. Despite its conceptual simplicity, this DtN operator is very useful for treating the
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scattering from materials having one or more cavities. This is a first original contribution

of this work.

2.1 Forward problem

Let us consider a scatterer Ω characterized by the refraction index m given by:

m =

√
εµ

√
ε0µ0

=
√
εrµr (2.1)

with εr and µr the relative electric permittivity and relative magnetic permeability.

The relevant partial differential equation (PDE) in strong form is [47]:

52w + k2m2w = 0 in Ω

52w + k2w = 0 in R2 \ Ω

w|∂Ω− − w|∂Ω+ = 0

∂nw|∂Ω− − ∂nw|∂Ω+ = 0

lim
r→∞

r1/2
(
∂r(w − wi) + jk(w − wi)

)
= 0

(2.2)

where w = wi+ws is the total field as the sum of the incident wi and the scattering ws

field, k is the wave number, ∂Ω− is the inner page and ∂Ω+ is the outer page of ∂Ω, ∂n is

the normal partial derivative and ∂r is the radial partial derivative.

2.1.1 Differential formulation coupled to the DtN operator

We assume that the scatterer is contained in a circular bounded domain Ω ⊂ BR ,

{r∈R2 | |r|≤R}, as shown in Figure 2.1 with radius R.

The corresponding weak form in BR is given by [34]:∫
∂BR

ϕ∂nw dl −
∫
BR

∇ϕ · ∇w dS + k2

∫
BR

m2ϕw dS = 0, ∀ϕ ∈ H1(BR) (2.3)

where w ∈ H1(BR), with H1(BR) = {ϕ ∈ L2(BR)|∇ϕ ∈ L2(BR)}.
The equation (2.3) is the final weak formulation [47]. It is equivalent to the strong form

above. Firstly, if we look at the strong form, we have two separate partial derivatives of

w, so the strong form requires w to be continuously differentiable until at least the second
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Figure 2.1: The reference problem. An arbitrarily-shaped object Ω and the contained

domain

partial derivative. The weak formulation has reduced this requirement to only first partial

derivatives. This is the first big advantage of a weak formulation. In general, solving the

strong form (governing differential equations) is not always efficient and there may not

be smooth (classical) solutions to a problem in particular. This is true especially in the

case of complex domains and/or different material interfaces etc. Moreover, incorporating

boundary conditions is always a daunting task when solving strong forms directly. It is

stronger the need to have continuous field variables. In order to overcome the above

difficulties, weak formulations are preferred. They reduce the continuity requirements

on the approximation (or basis functions) functions thereby allowing the use of easy-to-

construct and implement polynomials. This is one of the main reasons that explain the

popularity of weak formulations.

Our reference problem consists of computing the electromagnetic scattering from an

object of arbitrary shape, hit by a known incident field. At any spatial position r the total

field is given by the sum of the of the incident and the scattering fields:

w(r) = ws(r) + wi(r).
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Then it follows that:∫
∂BR

ϕ∂n(ws + wi)dl −
∫
BR

∇ϕ · ∇(ws + wi)dS

+k2

∫
BR

m2ϕ(ws + wi)dS = 0, ∀ϕ ∈ H1(BR) (2.4)

The Dirichlet-to-Neumann operator for the exterior problem in R2 \BR is defined as

∂nw
s|∂BR = ΛR[ws|∂BR ] (2.5)

and∫
∂BR

ϕ(ΛRw
s)dl −

∫
BR

∇ϕ · ∇wsdS + k2

∫
BR

m2ϕwsdS = f, ∀ϕ ∈ H1(BR) (2.6)

being

f = −
∫
∂BR

ϕ∂nw
idl +

∫
BR

∇ϕ · ∇widS − k2

∫
BR

m2ϕwidS (2.7)

It is worth nothing that the source term f for (2.6) has to be vanishing when m = 1, i.e

when there is no scatterer:

−
∫
∂BR

ϕ∂nw
idl +

∫
BR

∇ϕ · ∇widS − k2

∫
BR

ϕwidS = 0 (2.8)

Equation (2.8) can be exploited to rewrite (2.7) as follows:

f = −k2

∫
BR

(m2 − 1)ϕwidS (2.9)

2.1.2 Dirichlet-to-Neumann operator for a circle

In this section, we will compute the DtN operator on a circle for the exterior problem

in 2-dimensions (2D). The starting point is the following representation of the field as a

solution of the Helmholtz equation in cylindrical coordinates (see Appendix A).

w(r, θ) =
+∞∑

n=−∞

wnH
(2)
n (kr)ejnθ (2.10)

where H(2)
n are the second-order Hankel functions.



2.2. Internal Dirichlet-to-Neumann operator 31

From (2.10), according with [48], it follows that:

∂rw(r, θ) =
+∞∑

n=−∞

wn
dH

(2)
n

dr
(kr)ejnθ

=
+∞∑

n=−∞

wnk
H

(2)
n−1(kr)−H(2)

n+1(kr)

2
ejnθ

(2.11)

thus the DtN operator onto a circumference of radius R is the operator described by:

ΛR : w(r, θ) −→ k

4π

+∞∑
n=−∞

[
H

(2)
n−1(kR)−H(2)

n+1(kR)

H
(2)
n (kR)

∫ 2π

0

w(R, θ
′
)ejnθ

′

dθ
′

]
ejnθ

(2.12)

or:

ΛR[ejnθ] =
k

2

H
(2)
n−1(kR)−H(2)

n+1(kR)

H
(2)
n (kR)

ejnθ (2.13)

Moreover, we notice that:

wn =
1

2πH
(2)
n (kR)

∫ 2π

0

w(R, θ)ejnθdθ. (2.14)

The operator is therefore known in analytical form, in terms of a series expansion. It is

worth noting that the position of the circular boundary may be arbitrarily chosen, even

in close proximity of the scatterers. Therefore, the size of the solution domain may be

strongly reduced without any impact on accuracy of numerical solution.

2.2 Internal Dirichlet-to-Neumann operator

Let us consider a scatterer having refraction index m, the relevant problem in strong

form is described in (2.2). The problem analyzed in this section, is the evaluation (in the

frequency domain) of the electromagnetic scattering from a hollow object. The final goal

is to evaluate the scattered field, ws, assuming the incident field wi is known. At a generic

position r the total field is given by the sum of the two aforementioned contributions:

w(r) = ws(r) + wi(r) (2.15)

We assume that the scatterer is contained in an anular domain that is bounded by two

boundaries ∂Bo
R and ∂BI

R (see Figure 2.2).
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Figure 2.2: Scatterer contained in a bounded domain, with an internal and external bound-

aries

By considering that the boundary domain ∂BR is the union of ∂Bo
R and ∂BI

R, the

corresponding weak form in BR, is given by∫
∂BoR

ϕ∂nw dl +

∫
∂BIR

ϕ∂nw dl−∫
BR

∇ϕ · ∇w dS + k2

∫
BR

m2ϕw dS = 0, ∀ϕ ∈ H1(BR)

(2.16)

then∫
∂BoR

ϕ∂n(ws + wi)dl +

∫
∂BIR

ϕ∂n(ws + wi)dl−∫
BR

∇ϕ · ∇(ws + wi)dS + k2

∫
BR

m2ϕ(ws + wi)dS = 0, ∀ϕ ∈ H1(BR)

(2.17)

where H1(BR) = {ϕ∈L2(BR) | ∇ϕ∈L2(BR)}.
Let Λo

R be the Dirichlet-to-Neumann operator for the exterior problem in Ro ≤ r ≤
∞, i.e.,

∂nw
s|∂BoR = Λo

R[ws|∂BoR ] (2.18)

and, analogously, let ΛI
R be the Dirichlet-to-Neumann operator for the internal problem
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0 ≤ r ≤ Ri, i.e.,

∂nw
s|∂BIR = ΛI

R[ws|∂BIR ] . (2.19)

According to (2.18) and (2.19), the equation (2.17) became:∫
∂BoR

ϕΛo
R(ws)dl +

∫
∂BIR

ϕΛI
R(ws)dl−∫

BR

∇ϕ · ∇wsdS + k2

∫
BR

m2ϕwsdS = f, ∀ϕ ∈ H1(BR)

(2.20)

being:

f = −
∫
∂BoR

ϕ∂n(wi)dl −
∫
∂BIR

ϕ∂n(wi)dl +

∫
BR

∇ϕ · ∇widS − k2

∫
BR

m2ϕwidS

= −k2

∫
BR

(m2 − 1)ϕwidS.

(2.21)

where f is a source term that depends only on the know incident field, that we will con-

sider in the next paragraphs as a plane wave.

2.2.1 Dirichlet-to-Neumann operator for a circle

The DtN operator on the circle for the exterior problem in 2D has already been calculated

in Section 2.2 . Here we compute the DtN operator on the circle for the interior problem

in 2D case.

The starting point is the following representation of the field in the internal domain,

resulting from the solution of the Helmholtz equation in cylindrical coordinates

w(r, θ) =
+∞∑

n=−∞

wnJn(kr)ejnθ (2.22)

where Jn are the Bessel functions.

From (2.22) it follows that

∂rw(r, θ) =
+∞∑

n=−∞

wn
dJn
dr

(kr)ejnθ

=
+∞∑

n=−∞

wnk
Jn−1(kr)− Jn+1(kr)

2
ejnθ .

(2.23)
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Thus the DtN into the circumference on radius Ri is the operator described by:

ΛI
R : w(r, θ) −→ − k

4π

+∞∑
n=−∞

[
Jn−1(kRi)− Jn+1(kRi)

Jn(kRi)

∫ 2π

0

w(Ri, θ
′
)ejnθ

′

dθ
′
]
ejnθ .

(2.24)

Moreover, we can notice that:

wn =
1

2πJn(kRi)

∫ 2π

0

w(Ri, θ)ejnθdθ . (2.25)

It should be noted that: (i) only the boundary values of w are needed in order to compute

the (2.22) and (2.24), (ii) the DtN is a non local operator.
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TRANSVERSE MAGNETIC AND

ELECTRIC ILLUMINATION

This chapter is focused on differential formulations coupled with the Dirichlet-to-Neumann

operator for the Transverse Magnetic and Transverse Electric illumination, where the ob-

ject may be anisotropic but it is z-invariant (TMz or TEz, respectively). This extension to

TMz and TEz scattering is another original contribution of this work. It is worth noting

that the scatterers under investigation can be either homogeneous or inhomogeneous and

either isotropic or anisotropic.

3.1 Problem setting

Let us consider a cylindrical scatterer of arbitrary cross section Ω ⊂ R2 described by

the permittivity tensor ε and the permeability tensor µ. These tensors are both invariant

with z, i.e. ε = ε (x, y) and µ = µ (x, y). In addition, we assume that the scatterer is

symmetric about the z axis. Consequently, tensors ε and µ are

ε =


εxx εxy 0

εyx εyy 0

0 0 εzz

 ; µ =


µxx µxy 0

µyx µyy 0

0 0 µzz

 . (3.1)
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and εT , µT refer to the transverse part of ε and µ, respectively:

εT =

[
εxx εxy

εyx εyy

]
; µT =

[
µxx µxy

µyx µyy

]
. (3.2)

Hereafter, for the sake of convenience, we define Ωe = Ω × [0, 1]. Ωe corresponds to a

unit length section of the cylindrical scatterer. Its boundary ∂Ωe is

∂Ωe = S0 ∪ S1 ∪ Sl (3.3)

being S0 = Ω× {0}, S1 = Ω× {1} and Sl = ∂Ω× [0, 1].

Figure 3.1: The reference problem. An arbitrarily shaped object Ωe

3.2 TMz illumination

3.2.1 Forward problem

We assume that the source electric current density J0 is oriented along the z-direction

and does not depend on z, i.e. J0 = J0 (x, y) îz. The electric field E is z-directed too,

E = Ez(x, y)̂iz. Since E is curl-conforming, under the TM illumination, we have that Ez
is grad-conforming under the TM illumination

From Maxwell equations we have that the electric field satisfies:

∇× jν

ω
∇× E = jωεE + J0. (3.4)
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3.2.2 Weak formulation

The corresponding weak form of (3.4) is given by:∫
Ωe

ϕ · ∇ × jν

ω
∇× EdV =

∫
Ωe

jωϕ · εEdV +

∫
Ωe

ϕ · J0dV (3.5)

then: ∫
Ωe

ϕ · ∇ × ν∇× EdV −
∫

Ωe

ω2ϕ · εEdV = −
∫

Ωe

jωϕ · J0dV. (3.6)

We take as test function ϕ’s defined as follows:

ϕ = ϕz(x, y)̂iz. (3.7)

It is worth noting that ϕ ∈ H(rot,Ωe), where

H(rot,Ωe) =
{
ϕ∈

(
L2(Ωe)

)2
: rot(ϕ)∈L2(Ωe)

}
. (3.8)

and ϕz ∈ H1(Ωe) where

H1(Ωe) =
{
ϕz∈L2(Ωe) : ∇ϕz∈

(
L2(Ωe)

)2
}
. (3.9)

Using the vector identity:

∇ · (ϕ× ν∇× E) = (∇×ϕ) · (ν∇× E)−ϕ · ∇ × ν∇× E (3.10)

in equation (3.6) we have:∫
Ωe

(∇×ϕ) · (ν∇× E)dV −
∫

Ωe

∇ · (ϕ× ν∇× E)dV −
∫

Ωe

ω2ϕ · εE

= −
∫

Ωe

jωϕ · J0dV

(3.11)

Hereafter, we define ν as:

ν = µ−1. (3.12)

Thus

ν =


νxx νxy 0

νyx νyy 0

0 0 νzz

 (3.13)
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and νT is the transverse part of ν, i.e.

νT =

[
νxx νxy

νyx νyy

]
. (3.14)

Let us consider the first integral in (3.11):

I1 =

∫
Ωe

(∇×ϕ) · (ν∇× E)dV. (3.15)

We notice that:

∇× E = ∇Ez(x, y)× îz (3.16)

and, similarly

∇×ϕ = ∇ϕz(x, y)× îz (3.17)

After replacing (3.16) and (3.17) in (3.15), and considering dV = dSdz, we have

I1 =

∫ 1

0

∫
Ω

(∇ϕz × îz) · ν(∇Ez × îz)dSdz =

∫
Ω

(∇ϕz × îz) · ν(∇Ez × îz)dS. (3.18)

We notice that

(a× îz) · ν(b× îz) = aT

[
0 −1

+1 0

]
νT

[
0 1

−1 0

]
b, (3.19)

Also, we notice that[
0 −1

+1 0

]
ν

[
0 1

−1 0

]
=

[
νyy −νyx
−νxy νxx

]
= det(νT )ν−TT =

µTT
det(µT )

, (3.20)

being det(·) the determinant of a matrix. Therefore, I1 becomes:

I1 =

∫
Ω

∇ϕz ·
µTT

det(µT )
∇EzdS. (3.21)

Concerning the second integral in (3.11), i.e. 1:

I2 =

∫
Ωe

∇ · (ϕ× ν∇× Es)dV (3.22)

1Here the subscript ”-” means that the physical quantities on a closed surface are defined as the limit

from the interior.
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it is worth noting that, by using the divergence theorem, we have:

I2 =

∫
∂Ω−e

(ϕ× ν∇× E) · n̂dS. (3.23)

From ∂Ωe = S0 ∪ S1 ∪ Sl, (3.22) becomes:

I2 =

∫
S−0

(ϕ×ν∇×E) ·n̂dS+

∫
S−1

(ϕ×ν∇×E) ·n̂dS+

∫
S−l

(ϕ×ν∇×E) ·n̂dS (3.24)

Since the normal vectors are equal and opposite on S−0 and S−1 ,as shown in Figure 3.2 the

Figure 3.2: The normal vectors of an arbitrarily shaped object Ωe

first two integrals cancel:

I2 =

∫
S−l

(ϕ× ν∇× E) · n̂dS

=

∫
Sl

ϕz îz × ν(∇Ez × îz) · n̂dS

=

∫
Sl

(n̂× ϕz îz) · ν(∇Ez × îz)dS. (3.25)

From dS =dldz we have:

I2 =

∫
∂Ω−

(n̂× ϕz îz) · ν(∇Ez × îz)dl. (3.26)

Eventually, we consider the third integral in (3.11). Specifically, from dV = dSdz we

have

I3 = ω2

∫
Ωe

ϕ · εEdV = ω2

∫
Ω

ϕ · εEdS (3.27)

Since bothϕ and E are z-directed, we have that the argument of the integral appearing

in (3.27) is:

ϕ · εE = εzzϕzEz, (3.28)
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thus

I3 = ω2

∫
Ω

εzzϕzEzdS. (3.29)

Finally, equation (3.11) becomes:∫
Ω

∇ϕz ·
µTT

det(µT )
∇EzdS−

∫
∂Ω−

(n̂× ϕz îz) · ν(∇Ez × îz)dl − ω2

∫
Ω

εzzϕzEzdS =

− jω
∫

Ω

ϕzJ0dS

(3.30)

Let the scattered field be definend, as usual, as Es = E−Ei, where Ei is the incident

field. Then, it follows that:∫
Ω

∇ϕz ·
µTT

det(µT )
∇(Ei

z + Es
z)dS −

∫
∂Ω−

(n̂× ϕz îz) · ν(∇(Ei
z + Es

z)× îz)dl+

− ω2

∫
Ω

εzzϕz(E
i
z + Es

z)dS = −jω
∫

Ω

ϕzJ0dS

(3.31)

from which:∫
Ω

∇ϕz ·
µTT

det(µT )
∇Es

zdS −
∫
∂Ω−

(n̂×ϕz îz) · µ−1(∇Es
z × îz)dl− ω2

∫
Ω

εzzϕzE
s
zdS = f

(3.32)

being:

f = −
∫

Ω

∇ϕz ·
µTT

det(µT )
∇Ei

zdS +

∫
∂Ω−

(n̂× ϕz îz) · µ−1(∇Ei
z × îz)dl +

+ω2

∫
Ω

εzzϕzE
i
zdS − jω

∫
Ω

ϕzJ0dS. (3.33)

It is worth noting that any anisotropy of ε in the x, y plane is filtered out.

We conclude this section by noting that the incident field satisfies∫
Ω

∇ϕz · µ−1
0 ∇Ei

zdS−
∫
∂Ω−

(n̂× ϕz îz) · µ−1
0 (∇Ei

z × îz)dl − ω2

∫
Ω

ε0ϕzE
i
zdS

− jω
∫

Ω

ϕzJ0dS

(3.34)

thus

f = −
∫

Ω

∇ϕz ·
(

µTT
det(µT )

− µ−1
0 I

)
∇Ei

zdS

+

∫
∂Ω−

(n̂× ϕz îz) ·
(
µ−1 − µ−1

0 I
)

(∇Ei
z × îz)dl

+ ω2

∫
Ω

(εzz − ε0)ϕzE
i
zdS . (3.35)
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Equation (3.35) provides the source term f of (3.32) in terms of the incident field and the

variation of the material properties.

3.2.3 Dirichlet-to-Neumann operator

The second integral appearing on the left-hand side of (3.32) can be written as

Figure 3.3: The vector product n̂× îz = t̂ on ∂Ω, where t is the unit tangent vector

∫
∂Ω−

ϕz(n̂× îz) · µ−1(∇Es
z × îz)dl =

∫
∂Ω−

ϕz t̂ · µ−1(−jωBs)dl

= −jω
∫
∂Ω

ϕz
(
t̂ ·Hs

)
− dl

= −jω
∫
∂Ω

ϕz
(
t̂ ·Hs

)
+

dl

= −jω
∫
∂Ω

ϕzΛH

[
(Es

z)+

]
dl

= −jω
∫
∂Ω

ϕzΛH

[
(Es

z)−
]

dl (3.36)

where we exploited that n̂× îz = t̂ on ∂Ω and ΛH is the operator mapping the tangential

component of the electric field on ∂Ω onto the tangential component of the magnetic field

on ∂Ω (Dirichlet-to-Neumann operator):

ΛH : (Es
z)+ |∂Ω −→

(
t̂ ·Hs

)
+
|∂Ω, (3.37)

and we have exploited the continuity of the tangential component of the field E and H

across ∂Ω.
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It is worth noting that

(
t̂ ·Hs

)
+

= − 1

jωµ0

(
t̂ · ∇ × Es

)
+

= − 1

jωµ0

(∇Es
z)+ · îz × t̂

= − 1

jωµ0

(∂nE
s
z)+ (3.38)

i.e.

ΛH = − 1

jωµ0

Λ (3.39)

being

Λ : (Es
z)+ |∂Ω −→ (∂nE

s
z)+ |∂Ω, (3.40)

therefore ∫
∂Ω−

ϕz(n̂× îz) · µ−1(∇Es
z × îz)dl =

1

µ0

∫
∂Ω

ϕzΛ
[
(Es

z)−
]

dl. (3.41)

The governing equation (3.32) is, consequently:∫
Ω

∇ϕz ·
µTT

det(µT )
∇Es

zdS −
1

µ0

∫
∂Ω

ϕzΛ
[
(Es

z)−
]

dl − ω2

∫
Ω

εzzϕzE
s
zdS = f. (3.42)

We conclude this section by recalling that the exterior problem, with respect to Ω, is

defined as follows:

∇2Es
z + k2

0E
s
z = 0 in R2\Ω (3.43)

Es
z = g on ∂Ω (3.44)

lim
r→+∞

r1/2(∂rE
s
z + jk0E

s
z) = 0. (3.45)

3.3 TEz illumination

In this section we examine the scattering of TE waves from a cylindrical scatterer of

arbitrary cross section (invariant along the z-axis) by a differential formulation coupled

with the Dirichlet-to-Neumann (DtN) operator. The scatterer may be anisotropic.
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3.3.1 Forward problem

Here we assume the source current density is directed in the transverse x, y plane, i.e.

J0 = J0x (x, y) îx + J0y (x, y) îy, we have a TE wave, where both the magnetic flux

density and the magnetic field are directed along the z-axis, whereas the electric field

and the electric displacement field are directed in the x, y plane. In this setting, it is

convenient to assume as unknown the magnetic field that is described by one component

only: H = Hz(x, y)̂iz. In addition, we notice that since H is div-conforming, it turns out

that Hz ∈ H1 (Ω). From Maxwell’s equations we have that the magnetic field satisfies:

∇× ε−1

jω
(∇×H− J0) = −jωµH (3.46)

that is:

∇× (ε−1∇×H)− ω2µH = ∇×
(
ε−1J0

)
(3.47)

3.3.2 Weak formulation

The weak form of (3.47) in Ωe is given by:∫
Ωe

ϕ · ∇ × (ε−1∇×H)dV − ω2

∫
Ωe

ϕ · µHdV =

∫
Ωe

ϕ · ∇ ×
(
ε−1J0

)
dV (3.48)

We assume the function ϕ ∈ H (rot,Ωe) be defined as follows:

ϕ = ϕz(x, y)̂iz (3.49)

being ϕz ∈ H1 (Ω). Using the vector identity:

∇ ·
(
ϕ× ε−1∇×H

)
= ∇×ϕ · ε−1∇×H−ϕ · ∇ × (ε−1∇×H) (3.50)

we have2: ∫
Ωe

∇×ϕ · ε−1∇×HdV −
∫
∂Ωe

ϕ− × ε−1
− (∇×H)− · n̂dS

−ω2

∫
Ωe

ϕ · µHdV =

∫
Ωe

ϕ · ∇ ×
(
ε−1J0

)
dV (3.51)

2Here the subscript ”-” means that the physical quantities on a closed surface are defined as the limit

from the interior.
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Let us consider the first integral in (3.51):

I1 =

∫
Ωe

∇×ϕ · ε−1∇×HdV (3.52)

We notice that:

∇×H = ∇Hz (x, y)× îz (3.53)

and, similary,

∇×ϕ = ∇ϕz (x, y)× îz, (3.54)

thus, after replacing in (3.51) and considering that dV =dSdz, we have

I1 =

∫ 1

0

∫
Ω

∇ϕz× îz ·ε−1
(
∇Hz × îz

)
dSdz =

∫
Ω

∇ϕz× îz ·ε−1
(
∇Hz × îz

)
dS (3.55)

We notice that: (
a× îz

)
· ε−1

(
b× îz

)
= aT ·

εTT
det(εT )

bT (3.56)

The integral I1 as already seen in the TMz case, becomes:

I1 =

∫
Ω

∇ϕz ·
εTT

det(εT )
∇HzdS. (3.57)

Concerning the second integral in (3.51)

I2 =

∫
∂Ω−e

ϕ× ε−1 (∇×H) · n̂dS (3.58)

it can be cast as

I2 =

∫
S−0

ϕ× ε−1 (∇×H) · n̂dS +

∫
S−1

ϕ× ε−1 (∇×H) · n̂dS

+

∫
S−l

ϕ× ε−1 (∇×H) · n̂dS. (3.59)

The first two integrals are equal apart from the sign, because the normal vectors are

equal and opposite on S0 and S1, thus:

I2 =

∫
S−l

ϕz îz × ε−1
[
(∇Hz)× îz

]
· n̂dS

=

∫
S−l

ϕz

(
n̂× îz

)
· ε−1

[
(∇Hz)× îz

]
dS. (3.60)
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From dS =dldz we have3:

I2 =

∫
∂Ω−

ϕz

(
n̂× îz

)
· ε−1

[
(∇Hz)× îz

]
dl. (3.61)

Eventually, we consider the third integral of (3.51). Specifically,from dV =dSdz we

have:

I3 = ω2

∫
Ωe

ϕ · µHdV = ω2

∫
Ω

ϕ · µHdS (3.62)

since both ϕ and H are z-directed, we have that the argument of the integral appearing in

(3.62) is:

ϕ · µH = µzzϕzHz (3.63)

thus

I3 = ω2

∫
Ω

µzzϕzHzdS (3.64)

The fourth integral of (3.51), i.e the source term

I4 =

∫
Ωe

ϕ · ∇ ×
(
ε−1J0

)
dV (3.65)

Using the vector identity

∇ ·
(
ε−1J0 ×ϕ

)
= ϕ · ∇ ×

(
ε−1J0

)
− ε−1J0 · (∇×ϕ) (3.66)

we have

I4 =

∫
∂Ω−e

ε−1 (J0)×ϕ · n̂dS +

∫
Ωe

ε−1J0 · ∇ ×ϕdV. (3.67)

3We also notice that I2 =
∫
∂Ω

(ϕz)− n̂ · εTT
det(εT )

(∇Hz)−dl.
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We notice that ∫
∂Ω−e

ε−1 (J0)×ϕ · n̂dS =

∫
∂Ω−e

ϕz îz × n̂ ·
(
ε−1J0

)
dS

=

∫
S−l

ϕz îz × n̂ ·
(
ε−1J0

)
dS

=

∫
∂Ω−

ϕz îz × n̂ ·
(
ε−1J0

)
dl (3.68)

because n̂ = ±îz on S0 ∪ S1 and dS =dzdl on Sl. Therefore

I4 =

∫
∂Ω−

ϕz îz × n̂ ·
(
ε−1J0

)
dl +

∫
Ω

ε−1J0 · ∇ ×ϕdS

=

∫
∂Ω−

ϕz îz × n̂ ·
(
ε−1J0

)
dl +

∫
Ω

ε−1J0 · ∇ϕz × îzdS

=

∫
∂Ω−

ϕz îz × n̂ ·
(
ε−1J0

)
dl +

∫
Ω

∇ϕz · îz × ε−1J0dS. (3.69)

Summing up, equation (3.51) becomes:

∫
Ω

∇ϕz ·
εTT

det(εT )
∇HzdS

−
∫
∂Ω−

ϕz

(
n̂× îz

)
· ε−1

[
(∇Hz)× îz

]
dl

− ω2

∫
Ω

µzzϕzHzdS

=

∫
∂Ω−

ϕz

(
îz × n̂

)
·
(
ε−1J0

)
dl +

∫
Ω

∇ϕz · îz × ε−1J0dS. (3.70)

Let the scattered field be defined, as usual, as Hs = H − Hi, where Hi is the incident

field . Then, it follows that:∫
Ω

∇ϕz ·
εTT

det(εT )
∇
(
H i
z +Hs

z

)
dS

−
∫
∂Ω−

ϕz

(
n̂× îz

)
· ε−1

[
∇
(
H i
z +Hs

z

)
× îz

]
dl

− ω2

∫
Ω

µzzϕz
(
H i
z +Hs

z

)
dS

=

∫
∂Ω−

ϕz

(
îz × n̂

)
·
(
ε−1J0

)
dl +

∫
Ω

∇ϕz · îz × ε−1J0dS (3.71)
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thus∫
Ω

∇ϕz ·
εTT

det(εT )
∇Hs

zdS

−
∫
∂Ω−

ϕz

(
n̂× îz

)
· ε−1

[
(∇Hs

z )× îz

]
dl

− ω2

∫
Ω

µzzϕzH
s
zdS = f (3.72)

where

f =

∫
∂Ω−

ϕz

(
îz × n̂

)
·
(
ε−1J0

)
dl +

∫
Ω

∇ϕz · îz × ε−1J0dS∫
Ω

∇ϕz ·
εTT

det(εT )
∇H i

zdS +

∫
∂Ω−

ϕz

(
n̂× îz

)
· ε−1

(
∇H i

z × îz

)
dl

+ω2

∫
Ω

µzzϕzH
i
zdS. (3.73)

By noting that the incident field satisfies∫
Ω

∇ϕz · ε−1
0 ∇HzdS −

∫
∂Ω−

ϕz

(
n̂× îz

)
· ε−1

0

(
∇Hz × îz

)
dl − ω2

∫
Ω

µ0ϕzHzdS

=

∫
∂Ω−

ϕz

(
îz × n̂

)
·
(
ε−1

0 J0

)
dl +

∫
Ω

∇ϕz · îz × ε−1
0 J0dS, (3.74)

we have

f =

∫
∂Ω−

ϕz

(
îz × n̂

)
·
(
∆
(
ε−1
)
J0

)
dl +

∫
Ω

∇ϕz · îz ×∆
(
ε−1
)
J0dS∫

Ω

∇ϕz ·∆
(

εTT
det(εT )

)
∇H i

zdS +

∫
∂Ω−

ϕz

(
n̂× îz

)
·∆
(
ε−1
) (
∇H i

z × îz

)
dl

+ω2

∫
Ω

∆µzzϕzH
i
zdS (3.75)

being

∆
(
ε−1
)

= ε−1 − ε−1
0 I (3.76)

∆

(
εTT

det(εT )

)
=

εTT
det(εT )

− ε−1
0 I (3.77)

∆µzz = µzz − µ0 (3.78)

where I is the identity tensor.
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3.3.3 Dirichlet-to-Neumann operator

The quantity (n̂ × îz) = t̂ is the unit tangent vector on ∂Ω.The second integral of (3.72)

can be written as:

∫
∂Ω−

ϕz(n̂× îz) · ε−1(∇Hs
z × îz)dl =

∫
∂Ω−

ϕz t̂ · ε−1(jωεEs + J0)dl (3.79)

= jω

∫
∂Ω

ϕz
(
t̂ · Es

)
− dl +

∫
∂Ω−

ϕz t̂ · ε−1J0dl

= jω

∫
∂Ω

ϕz
(
t̂ · Es

)
+

dl +

∫
∂Ω−

ϕz t̂ · ε−1J0dl

= jω

∫
∂Ω

ϕzΛE

[
(Hs

z )+

]
dl +

∫
∂Ω−

ϕz t̂ · ε−1J0dl

= jω

∫
∂Ω

ϕzΛE

[
(Hs

z )−
]

dl +

∫
∂Ω−

ϕz t̂ · ε−1J0dl

where ΛH is the operator mapping the tangent component of the magnetic field on ∂Ω

onto the tangent component of the electric field on ∂Ω (Dirichlet-to-Neumann operator):

ΛE : (Hs
z )+ |∂Ω −→

(
t̂ · Es

)
+
|∂Ω, (3.80)

Moreover, it is worth noting that(
t̂ · Es

)
+

=
1

jωε0

(
t̂ · ∇ ×Hs

)
+

=
1

jωε0

(∇Hs
z )+ · îz × t̂

=
1

jωε0

(∂nH
s
z )+ (3.81)

i.e.,

ΛH =
1

jωε0

Λ (3.82)

being

Λ : (Hs
z ) |∂Ω+ −→ (∂nH

s
z ) |∂Ω+ , (3.83)
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therefore∫
∂Ω−

ϕz(n̂× îz) ·ε−1(∇Hs
z × îz)dl =

1

ε0

∫
∂Ω−

ϕzΛ (Hs
z ) dl+

∫
∂Ω−

ϕz t̂ ·ε−1J0dl. (3.84)

The governing equation (3.72) is, consequently:∫
Ω

∇ϕz ·
εTT

det(εT )
∇Hs

zdS −
1

ε0

∫
∂Ω−

ϕzΛ (Hs
z ) dl − ω2

∫
Ω

µzzϕzH
s
zdS = f (3.85)

being:

f = −
∫

Ω

∇ϕz ·
εTT

det(εT )
∇H i

zdS

+

∫
∂Ω

(n̂× ϕz îz) · (ε−1∇H i
z × îz)dl + ω2

∫
Ω

µzzϕzH
i
zdS

+

∫
Ω

∇ϕz · îz × ε−1J0dS +

∫
∂Ω−

ϕz t̂ · ε−1J0dl (3.86)

We conclude this section by recalling that the exterior problem, with respect to Ω, is

defined as follows:

∇2Hs
z + k2

0H
s
z = 0 in R2\Ω (3.87)

Hs
z = g on ∂Ω (3.88)

lim
r→+∞

r1/2 (∂rH
s
z + jk0H

s
z ) = 0. (3.89)
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Chapter 4

NUMERICAL MODEL

This chapter focuses on the numerical implementation of the formulation discussed in

Chapter 2. The first part of the chapter starts with a brief introduction of the finite ele-

ment theory. The numerical models for both the external and internal DtN operators are

considered.

The DtN operators in their discrete form are represented by fully populated matrices.

This is a serious issue when dealing with the Internal DtN operator. Indeed, we proved

(4.3.1) that it does not reduce the computational cost with respect to the standard FEM.

However, we found that the DtN operators corresponds to low-rank matrices. Therefore,

we developed two sparsification approaches (4.4.1 and 4.4.3) to reduce the computational

cost of the matrix-by-vector product. The first one is based on an analytical factorization

of the DtN operators, the second one is based onto the Fast Fourier Transform (FFT)

algorithm.

4.1 Finite Element method for the scattering problem

One of most widely used numerical methods to solve PDE is the finite element method

(FEM). This method [47] is a numerical technique for finding approximate solutions of

partial differential equations (PDE).

The three fundamental steps of the FEM method are:

1. write the PDE in weak form starting from the strong form
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2. approximate the sought solution through an element of a finite dimensional linear

space WM .

3. impose the weak form for each test function belonging to the same spaces for WM .

In finite element modeling, the problem of finding the solution of PDE problem is re-

casted as the problem of finding the solution of a linear algebraic system. About the first

point, equations (2.6) and (2.20) are already written in weak form. Regarding the sec-

ond point, considering a subspace WM of finite dimension M and with basic functions

Bm = {w1, ..., wM} the scattered field can be expressed as follows:

ws =
M∑
i=1

xiϕi(x, y) (4.1)

where the ϕi’s are linearly independent functions, so called ’shape functions’ (or test

functions) and xi are the unknown coefficients (Degrees of Freedom, DoF), respectively.

In order to define the shape functions, we introduce the mesh discretization of a

domain Ω, in term of partitioning sub-domains T = {Ωi, ...,Ωn}. Consider a two-

dimensional domain, and a triangular partition Tr as shown in the figure 4.1, we can indi-

cate with P1, P2, ..., PNi the internal nodes of the partition Tr and with PNi+1, PNi+2, ..., PNi+Nj

the boundary nodes.

Figure 4.1: Meshing the domain Ω

A test function is associated with each node, and resulting in M = Ni +Nj functions

w1, w2, ..., wM . (4.2)
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The set of nodes, edges and triangles constitutes the mesh. A common choice to define

the shape functions is to consider piecewise linear functions, ”hat” functions (first order

shape functions) such that:

ϕh(Pi) = δh,i (4.3)

where δh,i is the Kronecker symbol. The functions ϕh are only related to the mesh.

Moreover the support of the basic function ϕh is the union of all triangles of Tr which have

the node Ph as the vertex. Consider a triangle with vertices Ph, Pi, Pj and their coordinates

Figure 4.2: Generic mesh triangle

(xh, yh), (xi, yi), (xj, yj) respectively, as shown in the figure 4.2. The restriction of the

test function wh to the triangle Tr has the following analytical expression:

ϕrh(x, y) = arhx+ brhy + crh (4.4)

where

arh =
1

2Ar
(yi − yh) (4.5a)

brh =
1

2Ar
(xj − xh) (4.5b)

crh =
1

2Ar
(xiyj − xjyi) (4.5c)

and the area of the triangle Tr:

Ar =
1

2
[(xiyj − xjyi) + (xjyh − xhyj) + (xhyi − xiyh)] (4.6)
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similar analytical expressions can be obtained for wri and wrj . The gradient of wrh(x, y) is

given by:

5ϕrh(x, y) = arhx̂+ brhŷ (4.7)

and the gradient of wri and wrj are give by:

5ϕri (x, y) = ari x̂+ bri ŷ (4.8)

5ϕrj(x, y) = arj x̂+ brj ŷ (4.9)

So far. we have completely defined the shape functions (step 2). The final step is

to find the xi’s in (4.1). To this end, we impose the weak formulation for each shape

function, which as matter of fact is a linear equation. Gathering all equations, we obtain

a linear algebric system. Full details will be provided in the next sections.

4.2 Numerical model for the differential formulation cou-

pled to the external DtN operator

The scattering problem, as explained in Chapter 2, can be solved numerically starting

from the weak form of (2.2) given by (2.6). Using the guidelines of the FEM methods

explained in section 4.1, we can obtain the discrete model. First, we express the unknown

as

ws =
N∑
i=1

xiϕi (4.10)

where the shape functions are first-order isoparametric nodal elements, the xn’s are the

unknown coefficients, the so-called Degrees of Freedom (DoF) and N is the total number

of nodes of the finite element mesh. The (2.6) is the weak form of the (2.2) (step 1, see

section 4.1). Then, the Galerkin approach is applied to (2.6) to obtain the following linear

system of equations for the DoFs (step 3, see section 4.1):

(Λ −A+B)x = f (4.11)

where

Λh,i =

∫
∂BR

ϕh(ΛRϕi)dl (4.12)
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Ah,i =

∫
BR

∇ϕh · ∇ϕidS (4.13)

Bh,i = k2

∫
BR

m2ϕhϕidS (4.14)

fh = −k2

∫
BR

(m2 − 1)ϕhw
idS (4.15)

It is convenient partitioning the unknowns DoFs in xb and xi which are related to the

boundary and the internal nodes of the finite element mesh. In this way, we get:([
Λbb 0

0 0

]
−

[
Abb Abi

Aib Aii

]
+

[
Bbb Bbi

Bib Bii

])[
xb

xi

]
=

[
fb

fi

]
(4.16)

A is the stiffness matrix of the system that can be calculated as:

Ah,i =

∫
BR

∇ϕh · ∇ϕidS

=
Nt∑
r=1

∫
TR

∇ϕrh · ∇ϕri

=
Nt∑
r=1

(
a

(r)
h a

(r)
i + b

(r)
h b

(r)
i

)
Ar. (4.17)

whereNt is the number of triangles of the mesh. It is worth noticing that from the features

of the shape functions coefficients a(r)
h , a(r)

i , b(r)
h , b(r)

i are different from zero only in the r-

th triangle and therefore only those triangles that have both vertices Pi and Pp in common

contribute to the coefficient Ah,i. Hence the matrix A is sparse.

B is the mass matrix that can be calculated as follows [47]:

Bh,i = k2m2

∫
BR

ϕhϕidS (4.18)

= k2m2

Nt∑
r=1

Ar
h!i!

h+ i+ 2
(4.19)

Note that, for the same reasons, also B is sparse matrix. It is worth noticing that

matrices A and B are well known in the community of FEM , whereas the study of the

Λbb matrix is an original content of this Thesis. We will discuss details of Λbb in the next

sections.
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Equation (4.16) can be rewritten as:

[
Lbb Lbi

Lib Lii

][
xb

xi

]
=

[
fb

fi

]
(4.20)

where the subscripts ‘i’ and ‘b’ refer to the internal and boundary nodes of the compu-

tational domain BR, respectively and L = Λ −A +B is the sum of DtN, stiffness and

mass matrix. Due to non local nature of the DtN operator, Λbb is a NB×NB dense matrix

(see Chapter 2 section 2.2.1), being NB the number of degrees of freedom (DoFs) located

on ∂BR. In the typical cases of interest the NB (boundary nodes) are much less than NI

(internal nodes). This mean that Λbb is a very small part compared to the left part of

L matrix. This basically means that L is sparse. The equation (4.20) can be written in

compact form as:

Lx = f (4.21)

As stated, the initial problem is converted into the solution of a linear algebric system.

Moreover we note that the sparsity of L is a great advantage from computation point of

view, because specialized solver exist both for direct and iterative methods.

4.2.1 DtN integral

Here we compute Λ.

On the boundary ∂BR ws, can be represented as:

ws =
∑
i∈NB

xiϕi (4.22)

being NB a set of boundary nodes.The discretization of:

∫
∂BR

ϕ(ΛRw
s)dl =

∫
∂BR

ϕp(ΛRϕi)dl (4.23)
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in accord with (2.12) corresponds to:

=

∫ 2π

0

ϕp(R, θ)
k

4π

∞∑
n=−∞

[
H

(2)
n−1(kR)−H(2)

n+1(kR)

H
(2)
n (kR)

∫ 2π

0

ϕi(R, θ
′
)e−nθ

′

dθ
′

]
enθRdθ

=
kR

4π

∞∑
n=−∞

H
(2)
n−1(kR)−H(2)

n+1(kR)

H
(2)
n (kR)

∫ 2π

0

ϕi(R, θ
′
)e−nθ

′

dθ
′
∫ 2π

0

ϕp(R, θ)e
nθdθ

= πkR
∞∑

n=−∞

H
(2)
n−1(kR)−H(2)

n+1(kR)

H
(2)
n (kR)

Φi,nΦ∗p,n

(4.24)

where the symbol ∗ means the complex conjugate, and

Φi,n =
1

2π

∫ 2π

0

ϕi(R, θ
′
)e−nθ

′

dθ
′

(4.25)

Assuming a piecewise linear approximation for ϕi|∂BR we have:

Φi,n =
1

2πn2

[
e−nθ

i
0 − e−nθiN
θi0 − θiN

+
e−nθ

i
P − e−nθi0
θiP − θi0

]
(4.26)

where θi0 is the angle for node i and θiP = θi−1
0 and θiN = θi+1

0 . We provide the details of

(4.26) in Appendix C.

Figure 4.3: Polyhedric approximation of boundary

It is worth noting that the DtN matrix is symmetric.∫
∂BR

ϕp(ΛRϕi)dl =

∫
∂BR

ϕi(ΛRϕp)dl (4.27)
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4.3 Numerical model of differential formulation coupled

the Internal and External DtN operator

Using similar steps of the previous section 4.2, the DtN integral is divided in two parts

relative to the external and internal DtN, respectively. The linear system of the weak-form

equations (2.20) for DoFs can be written as:

(ΛI + ΛO −A+B)x = f (4.28)

where

ΛI
h,i =

∫
∂BIR

ϕh(Λ
I
Rϕi)dl (4.29)

ΛO
h,i =

∫
∂BOR

ϕh(Λ
O
Rϕi)dl (4.30)

Ah,i =

∫
BR

∇ϕh · ∇ϕidS (4.31)

Bh,i = k2

∫
BR

m2ϕhϕidS (4.32)

fh = −k2

∫
BR

(m2 − 1)ϕhw
idS (4.33)

Notice that the boundary nodes include those arising from the internal and external DtN

operators. By splitting the unknowns (DoFs) in boundary xb and internal nodes xi of the

finite element mesh, the system (4.28) can be written as :[
Lbb Lbi

Lib Lii

][
xb

xi

]
=

[
fb

fi

]
(4.34)

where the subscripts ‘i’ and ‘b’ refer to the internal and boundary nodes of the computa-

tional domainBR, respectively. Again we found (4.21) where theL = ΛI+ΛO−A+B

is a matrix composed by the internal and external DtN matrix, stiffness and mass matrix.

Note that ΛO and ΛI are the DtN matrices that respectively involve the external and

internal boundary nodes. These integrals give rise the dense matrices NBO × NBO and

NBI ×NBI , being NBO and NBI the number of DoFs located on ∂BO
R and ∂BI

R.
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4.3.1 Limits of Internal DtN

This section reports an analysis of the computational cost associated with the internal

DtN. The aim is to evaluate the efficacy of the use of the internal DtN coupled with the

external one, to solve the scattering problem from hollow objects.

The discretization of the domain is composed of equilateral triangles. If l is the side

of a generic equilateral triangle, the area is:

AT =
l2

4

√
3 (4.35)

The number of triangles in the internal domain in the case of standard FEM method with-

out the internal DtN is:

NT =
πR2

i
l2

4

√
3

=
4πR2

i√
3l2

(4.36)

where Ri is the internal radius of ∂BI
R.

Figure 4.4: Geometry reference for evaluating the computational cost for the internal DtN

As shown in Figure 4.5, each triangle generates 3 nodes and each node is shared by

six triangles and is surrounded by six adjacent nodes. Thus the number of internal nodes

is given by ;

NN =
3NT

6
=
NT

2
(4.37)

The computational cost is related to the number of non-zero (nnz) elements of the

matrixNc . We note that each entry in the matrix rows is related to the number of adjacent
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Figure 4.5: Triangular partition

nodes. Hence the number of the entries is twice (symmetry) the number of adjacent nodes

plus the diagonal entries. For this reason the computational cost is given by:

NC,FEM = 13NN = 13
NT

2
=

13

2

4πR2
i√

3l2
(4.38)

Instead, the computational cost associated with the use of the internal DtN is given by,

as shown in the Figure 4.4:

NC,DtNi =

(
2πRi

l

)2

(4.39)

The ratio between the costs is:

NC,DtNi

NC,FEM
=

4π2R2
i

l2

13
2

4πR2
i√

3l2

=
2
√

3

13
π ' 0.83 (4.40)

It is evident from the result the use of Internal DtN, for hollow objects, is not efficient

in term of the computational cost. To overcome this limit a sparsification of the DtN

matrix is mandatory. The speedup of this matrix decreases the computational cost and

makes the DtN effective for the interior problem, this sparsification is tried in section 4.4.

4.4 Sparsification of the DtN

Matrix Λbb can be properly sparsified through different techniques. We propose two ap-

proaches: one based on a factorization and an the other based on Fast Fourier Transform

(FFT). The aim is to reduce the number of multiplications N2
b of the matrix-by-vector

product Λbbxb keeping the same accuracy. In the following subsections we will show that

the computational cost of the two proposed approaches is approximately the same.
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4.4.1 Factorization

The first approach for sparsifying the DtN integral, is based on a factorization. The start-

ing point is the discrete version of (4.12):∫
∂BR

ϕp(ΛRϕi)dl = πkR
+∞∑

n=−∞

H
(2)
n−1(kR)−H(2)

n+1(kR)

H
(2)
n (kR)

Φn,iΦ
∗
n,p (4.41)

where

Φn,i =
1

2π

∫ 2π

0

ϕi(R, θ)e
−jnθ′dθ

′
. (4.42)

We can write integral (4.41) in matrix form as:

Φ†SΦ (4.43)

where the symbols ∗ and † indicates the conjugate and conjugate transpose of the referred

matrix, respectively.

Truncating the sum of (4.41) between n = −NA..., 0, ...NA, and denoting the number

of boundary nodes on ∂BR as NB, then Φ is a (2NA+1)×NB matrix:

Φ =


φ−NA,1 . . . φ−NA,NB

...
...

...

φNA,1 . . . φNA,NB


=
[
φn1, . . . φnNB

] (4.44)

while S is the (2NA+1)×(2NA+1) diagonal matrix

S = diag(dn) =



d−NA
. . .

d0

. . .

dNA


(4.45)

where

dn = πkR
H

(2)
n−1(kR)−H(2)

n+1(kR)

H
(2)
n (kR)

. (4.46)
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Thus, the integral (4.41) in matrix form becomes:

Φ†SΦ =


φ†n1

...

φ†NBn





d−NA
. . .

d0

. . .

dNA


[
φn1, . . . φnNB

]

= Λb,b (4.47)

where the (NB×NB) matrix Λb,b is the DtN matrix.

4.4.2 Computational cost for the factorization approach

Using the factorization form (4.47), we carry out the matrix by vector multiplications in

3 steps:

1. y = Φx, number of multiplications (2NA + 1)× (2NB + 1)

2. z = Sx, number of multiplications (2NA + 1)

3. y = Φ†z, number of multiplications (2NA + 1)× (2NB + 1)

Summing up the computational cost for computing Λbbxb is reduced to:

NC,fact = (2NA + 1)× (2NB + 1) (4.48)

where NA is the maximum number of the harmonics. We define the gain for the computa-

tional cost as the ratio between the number of multiplications originally required and the

number of multiplications with the factorization, i.e.,

Gfact =
N2
B

(2NA + 1)× (2NB + 1)
(4.49)

If NA, NB � 1

Gfact =
N2
B

4NBNA

=
NB

4NA

. (4.50)

In the next chapter, during the validation of the method, we will prove numerically the

decrease of computational cost.
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4.4.3 FFT approach

Another approach to sparsify the DtN integral is based on the Fast Fourier Transform

(FFT) [49]. Indeed, it can be observed that the representation of the field (2.10) on the

boundary ∂BR can been see as a Forier series:

w(R, θ) =
+∞∑

n=−∞

ane
jnθ (4.51)

with coefficients

an = wnH
(2)
n (kR) (4.52)

and the radial derivative of (4.51) can be written as:

∂rw(R, θ) =
+∞∑

n=−∞

wn
dH

(2)
n

dr
(kR)ejnθ

=
+∞∑

n=−∞

an
H

(2)
n−1(kR)−H(2)

n+1(kR)

2H
(2)
n (kR)

ejnθ

(4.53)

In order to speedup the computation, the Fourier coefficients can be calculated with

the help of the FFT on the boundary ∂BR. It is worth noting that the mesh boundary

values xb are associated to nodes which are not equally spaced on ∂BR, as shown in the

Figure 4.6. For this reason it is necessary to use a linear interpolation from the boundary

values to NF equispaced samples with step θ=2π/NF .

In the following we report the necessary steps involved to speedup the matrix-by-

vector product Λbbxb using the FFT approach.

1. The values of field on equispaced sampling points NF can be computed with a

linear interpolation starting from the mesh boundary values:

p(θi) = p1 +
(θi − α1)

α2 − α1

(p2 − p1) α1 ≤ θi ≤ α2 (4.54)

where p1 = w(R,α1) and p2 = w(R,α2) are the values of the field in two consec-

utive nodes respectively, and α1 and α2 the values of the angle of p1 and p2. The

number of multiplications is NF +NB.

2. The FFT returns coefficients an as follows:

wn =
an

H
(2)
n (kR)

. (4.55)
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Figure 4.6: The NB meshing nodes (boundary nodes) are non equispaced, the NF FFT

nodes (sampling nodes) are equispaced

Notice that the number of required multiplications of the FFT is NF log2(NF ).

3. From (4.53) it follows that the coefficients of the normal derivative of the field are

given by:

bn =
an
2

H
(2)
n−1(kR)−H(2)

n+1(kR)

H2
n(kR)

(4.56)

with computational cost equal to NA+1.

4. The radial derivative by means of ∂rw(R, θ) can be found as the inverse FFT of bn:

∂w(R, θi)

∂n
= IFFT (bn) i = 1, ...NF . (4.57)

Notice that the number of required multiplications is the same of step 2.

5. Equation (4.57) returns the value of normal derivative of the field in on the regular

sampling of the boundary ∂BR. To get the values of the normal derivative of the

boundary nodes of the mesh we need another linear interpolation. For this reason

the computational cost is the same od step 1.

6. Finally, the Gauss-Legendre rule can be used to calculate the DtN integral (4.12) as

internal scalar product. Which computational cost is proportional of NB.
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Finally, as observed the use of FFT is a change of the representation from nodal values

of the field to harmonic series development.

4.4.4 Computational cost of the FFT approach

The computational cost for evaluating Λbbxb with the FFT approach is

NC,FFT = 2(NF +NB) + 2NF log2(NF ) + (2NA+1) +NB (4.58)

where NF is the number of sampling points.

The gain in terms of computational cost for the FFT is given by:

GFFT =
N2
B

2(NF +NB) + 2NF log2(NF ) + (2NA+1) +NB

. (4.59)

In the next chapter, we will see that the number of harmonics NA required for calculating

the integral DtN Λbbxb is low because is related to the slow variation of the field on the

boundary. Finally, notice that for NB � 1 we have GFFT (4.50) still holds:

GFFT =
NB

3NB + 2NF (log2(NF ) + 1)
(4.60)

Hence, as afore mentioned, the two different approaches (factorization and FFT) have

the same asymptotic computation cost behavior. By comparing the two approaches for

NA, NB � 1 it is possible to conclude that the computational cost gain of Factorization

is slightly better than that of FFT.
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Chapter 5

VALIDATION

In this chapter, the Dirichlet-to-Neumann (DtN) approach presented in this Thesis is ap-

plied to three different electromagnetic scattering problems. The proposed method is here

compared to a classical approach, based on the implementation of the state-of-the-art ab-

sorbing boundary conditions, i.e. the Perfect Matching Layer.

The first problem is used to validate the proposed technique: indeed, the DtN nu-

merical solution and that obtained from the PML approach are compared to an analytical

reference solution. In the second case the scattering from a PVC tube contained in an

annulus, bounded by two boundaries is presented. This case refers to a problem typically

found in non-destructive testing applications. In the last case, a cable bundle is reported,

in a typical configuration of interest of the electromagnetic compatibility (EMC) analysis.

This validation proves the superiority of the DtN based approach with respect to PML

both in terms of reduced number of multiplication for computing the matrix-by-vector

product for a prescribed accuracy and in terms of better condition number of the relevant

stiffness matrix.

5.1 Scattering from a penetrable cylinder

For the first case an infinitely long penetrable cylinder is considered. The scatterer is

illuminated by a TMz plane wave, with wave-vector k oriented along the x-axis, as shown

in Figure 5.1. The incident field is thus given by:
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Figure 5.1: Case-study 1. Geometry of the problem: scattering from an infinitely long

penetrable cylinder, illuminated by a TMz plane wave.

Ei(r, θ) = E0e
− k r cos(θ) (5.1)

We assume a scatterer with a radius a = 0.1 m and the DtN boundary with a radius

BR = 0.12 m, and εr = 4. The scatterer is hit by a plane-wave of frequency f = 300 MHz

(wavelength λ = 1 m).

The spatial distribution of the magnitude of the scattered field normalized to the in-

cident field is showed in Figure 5.2, calculated from the analytical solution provided in

[50].

5.1.1 Numerical result: DtN versus PML

The DtN numerical solution is implemented by a FE numerical model using a standard tri-

angular mesh and nodal shape functions of the first order. The linear system of equations

arising from the Finite Element Model has been solved through the Biconiugate Gradient

Stabilized (BICGSTAB) [51], [52] combined with Incomplete LU (ILU) preconditioner

[53]- [54].

This solution is compared to a PML-based one obtained by using COMSOL Multiphysics R©
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Figure 5.2: Scattering from a penetrable cylinder. Spatial distribution of the amplitude of

the scattered field, normalized to the incident field.

[55]. This latter approach requires a layer of thickness δ to be added externally to the scat-

terer. In this case the propagating waves are attenuated as:

e(ωt−kr)−
k
ω

∫ δ
σ σ(r

′
)dr
′

(5.2)

being σ a positive function of the distance. The thickness δ and the distance of the layer

have been optimized as shown in Figure 5.3, which shows the behavior of the. The relative

error defined as

e∞ =
||Es

n − Es
a||∞

||Es
a||∞

(5.3)

where the subscript ’n’ and ’a’ refer to the numerical and analytical solutions [50], re-

spectively.

With the DtN approach the boundary of the computational domain can be placed close

to the scatterer, as shown in Figure 5.4 where for different radius is reported the relative

2-norm error defined as

e2 =
||Es

n − Es
a||2

||Es
a||2

. (5.4)
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Figure 5.3: PML optimization. Relative (infinity norm) error versus the values of distance

and thickness of the PML layer. The values are normalized to the wavelength.
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Figure 5.4: DtN boundary radius optimization. Relative 2-norm error versus as a function

of the total number of non-zero elements, for different radius of the DtN boundary.

For both approaches, the optimized configurations are reported in Figures 5.5. It is

evident that the DtN approach reduces the solution domain respect to the PML approach.

To prove the accuracy of the DtN approach, the plot of real and imaginary part of

scattering field and their difference respect to the reference solution are reported in Figures

5.6-5.7.

Figures 5.8 and 5.9 compare the DTN and PML solutions accuracy with to both the

relative 2-norm error. These errors are plotted as functions of the number of non-zero

(nnz) elements of the stiffness matrix, that is a measure of the computational cost, as

shown in Chap.4. It is evident that for a given computational cost, the accuracy gain in

using the DtN is about two order of magnitude.

Another important quantity is the condition number, that affects the rate of conver-

gence of iterative methods. The condition number of a matrix A is defined as:

k(A) = ||A|| ||A−1|| (5.5)

where ||A|| is the 2-matrix norm defined as ||A|| = (maxi λi)
1
2 , λi being the eigenvalues
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Figure 5.5: Scattering from a penetrable cylinder optimized positions for the boundary of

DTN (a) and for the PML position and thickness (b).
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(a)

(b)

Figure 5.6: Scattering from a penetrable cylinder, obtained by means of the DTN ap-

proach. (a)-(b) Spatial distribution of the real and imaginary part of the scattered field,

respectively.
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(a)

(b)

Figure 5.7: Scattering from a penetrable cylinder, obtained by means of the DTN ap-

proach. (a)-(b) Spatial distribution real and imaginary parts of the difference between

numerical and reference solution.
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Figure 5.8: Relative 2-error as a function of the total number of non-zero elements, for

DtN and PML approaches.
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Figure 5.9: Relative infinity error as a function of the total number of non-zero elements,

for DtN and PML approaches.



76 Chapter 5. VALIDATION

10
3

10
4

10
5

10
6

nnz

10
2

10
3

10
4

10
5

10
6

C
o
n
d
ti
o
n
 n

u
m

b
e
r,

 K

DtN

Pml

Figure 5.10: Relative infinity error as a function of the total number of non-zero elements,

for DtN and PML approaches.

of AHA. A problem with a low condition number is said to be well-conditioned, while

a problem with a high condition number is said to be ill-conditioned. In Figure 5.10 it is

reported the condition number k versus the total number of non-zero elements of the stiff-

ness matrix. The DtN scheme provides a lower condition number, hence outperforming

the PML one also in this sense.

5.1.2 Speed up of DtN matrix

As detailed in Chapter 4, the computational cost to solve the linear system, starting from

the numerical model (4.20) is given by the number of non zero elements of the stiffness

matrix L and by N2
B being NB the number of the DoFs located on the DtN boundary (see

Chap.4).

In Chapter 4 two different approaches for reducing the computational cost are pro-

posed: the factorization and the FFT. As regards to the first approach, the reduction of the

cost is related to the number of harmonics needed for truncating the sum of the discrete

form of the DtN integral (4.41). It can been that the number of harmonics required for
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calculating the DtN matrix without losing the accuracy is very small. Indeed, Figure 5.11

shows the relative 2-norm error calculated with respect to the reference solution versus

the Na number of harmonics for two different meshes. It is evident that for a small value

of Na the accuracy of the solution does not change, therefore the minimum value that can

be chosen to calculate the DtN matrix with the factorization and/or the FFT is Na = 5.

As stated in Chapter 4, the computational gain of both approaches to speed up the DtN

matrix are:

Gfact =
N2
B

(2NA + 1)× (2NB + 1)
(5.6a)

GFFT =
N2
B

2(NF +NB) + 2NF log2NF + (2NA + 1)
(5.6b)

Figure 5.12 shows the gain for the FFT 5.6b and the Factorization 5.6a approach

versus the relative error, i.e., versus the accuracy of numerical model. It is evident that for

high accuracy we have a gain in terms of computational cost with the FFT approach. For

example, to get an accuracy of 10−10 we have a gain equal to 2.

Finally, the relative 2-error versus the number of multiplications is reported in Figure

5.13. It is easy to observe the advantage of using the FFT and Factorization approach.

5.2 Scattering from a PVC tube

The second problem is referred to an application of non-destructive testing, and specif-

ically on the analysis of the degradation of a PVC tube, based on its electromagnetic

response. The PVC tubes are used in many fields, for example in thermal power plant,

compressed air systems, water system and so on.

Degradation of PVC can be a consequence of the environmental stresses, the chem-

ical and thermal degradation, the mechanical force and UV, gamma and other forms of

radiation. For this reason, the nondestructive methods are important for deterioration di-

agnosis, which involve the study of the electromagnetic scattering to obtain information

on the object under examination.

Specifically, the second case presented in this section is referred to the scattering by a

PVC tube infinitely long in the z-direction (Figure 5.14). The object is penetrable by the
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Figure 5.11: Relative 2-error as a function of the number of harmonics Na for a mesh of

(a) 2813 elements and (b) 11097 elements. .
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Figure 5.12: Gain versus the relative error for both the approaches for acceleration of DtN

matrix: FFT and Factorization

electromagnetic field, being a dielectric of relative permittivity εr = 3. Its dimensions are

Ri = 0.13 m and RO = 0.2 m for the internal and external boundary respectively.

We consider a PVC scatterer with an internal and external radius 0.19 m and 0.2 m

respectively, hit by a plane-wave propagating along x, with a frequency f = 300 MHz

(wavelength λ = 1 m).

The scattered electric field (z-component) is mapped in Figure 5.15, normalized to

that of the incident field. This result has been obtained by means of [50] and will be taken

as the reference solution hereafter.

5.2.1 Numerical results: DtN versus PML

The numerical solution of the DtN-based formulation is obtained with a FE numerical

model using a standard triangular mesh and nodal shape functions of the first order. Two

numerical solutions are here evaluated based on DtN formulation, one referred at only use

one DtN imposed on the external close boundary (2.6) and one that also involves the use
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Figure 5.13: Relative error versus number of multiplications for the original, FFT or

Factorization approach.

Figure 5.14: Case-study 2. Geometry and references for evaluating the scattering from an

infinitely-long PVC tube, illuminated by a TMz plane wave.
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Figure 5.15: Scattering from a PVC tube. Spatial distribution of the amplitude of the

scattered field, normalized to the incident field.

of internal DtN (2.20).

Figures 5.16-5.17 shows the plot of real and imaginary part of the scattered field ob-

tained by using the DtN, along with their difference respect to the reference solution.

The errors of the two DTN numerical solution and the PML one are reported in Figure

5.18 showing the accuracy gain of the DtN approaches for a given computational cost. As

already mentioned in Chapter 4 the sparsification of the DtN is mandatory to benefit from

the internal DtN in terms of computational gain. Indeed, this figure clearly shows that tue

use of internal DtN without sparsification does not provide a significant gain. Figure 5.19

shows the behavior of the infinite-error, which exhibit a similar behavior (in this case the

use of the internal DtN does not provided any improvement).

In order to better estimate the gain in terms of computational cost, besides the num-

ber of nonzero elements nnz it is of interest to compare the condition number K of the

resulting stiffness matrix associated with the two numerical models.

In Figure 5.20 it is reported the condition number K versus the number of no zero
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(a)

(b)

Figure 5.16: Scattering from a penetrable PVC tube. (a)-(b) Spatial distribution of the

real and imaginary part of the scattered field, respectively.



5.2. Scattering from a PVC tube 83

(a)

(b)

Figure 5.17: Scattering from a penetrable PVC tube. (a)-(b) Spatial distribution of the

difference between the real and imaginary part of the scattered field and the reference

solution in Fig. 5.15, respectively.
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Figure 5.18: Relative 2-error as a function of the total number of non-zero elements, for

PML approaches (in blue) external (in green) and external plus internal DtN (in red).
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for PML approaches (in blue) external (in green) and external plus internal DtN (in red)
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Figure 5.20: Condition number of the stiffness matrices associated to the two numerical

solutions, versus the number of nonzero elements.

element of the stiffness matrix.

5.2.2 Speed up of DtN matrix

As shown in Chapter 4, the computational cost to solve the linear system, starting from the

numerical model (4.34) is given by the number of no zero elements of stiffness matrix L

plus N2
BO and N2

BI of NBO and NBI the Dof associated to the external and internal DtN

boundaries, respectively. The computational cost for the two approaches Factorization

and FFT for the case of PVC tube is given by:

NC,fact = [(2NA + 1)× (2NB + 1)] + [(2NA + 1)× (2NBi + 1)]

= (2NA + 1)× [(2NB + 1) + (2NBi + 1)]
(5.7)

NC,FFT = [2(NF +NB) + 2NF log2NF + (2NA + 1)]

+ [2(NF +NBi) + 2NF log2NF + (2NA + 1)]

= 2(2NA + 1) + 4NF + 4NF log2NF + 2(NB +NBi)

(5.8)
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Figure 5.21: Relative error versus number of multiplications for the the original DtN

numerical solution, and for those obtained by using, FFT or Factorization approach.
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In Figure 5.21 is reported the relative 2-norm error versus the number of multiplica-

tions to solve the numerical model (4.34). Here Nm is given by the number of non-zero

elements of stiffness matrix L plus Ncfact or Ncfft for factorization or FFT approach

respectively. The gain in term of computational cost with to the original approach versus

the relative 2-norm error is reported in Figure 5.22.

5.3 Scattering from a cable bundle

As a final example of application of the DtN approach, we study here the scattering from

a bundle of cable. This problem is of great interest for instance in the Electromagnetic

Compatibility (EMC) analysis of automotive and/or aerospace applications. Specifically,

the EMC/EMI issues with cable harnesses have become a major challenge due to the

proliferation of electrical systems in vehicles, aircraft, ships, and buildings, which require

the use of several kilometers of cables, bundled in harnesses. When the above systems

are illuminated by an external field, it is essential to provide an accurate and efficient

evaluation of the near-field distribution in proximity of scattering objects [56]-[57]. These

results have been presented in the papers [58], [59], [60].

5.3.1 Scattering from a Cable Bundle in Air

As Case-Study 1, we refer to the geometry shown in Figure 5.23, where three conducting

wires are bundled in an unshielded cable, surrounded by air (εr = 1). The frequency is

again assumed to be equal to 3 GHz, with the wire radius a = λ/6, and the cable radius

b = λ. The three wires are reciprocally rotated by 120◦ and their centers are placed at a

distance equal to c = λ/2 from the cable center.

The DtN solution is calculated by choosing a circular boundary of radius R = 1.2λ.

For this case, no analytical solution is available, and thus the reference solution is assumed

to be that associated to the numerical solution provided by commercial code COMSOL

Multiphysics R© with PML approach, stabilized to an accuracy below 10−4. For this ex-

ample, computing the reference solution requires about 1.1 × 106 mesh elements. The

obtained distribution of the amplitude of the scattered field is plotted in Figure 5.24.
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Figure 5.23: Case-study 1 (cable bundle in air). Geometry and references for evaluating

the scattering from the cable bundle, illuminated by a TMz plane wave.

The evaluation of the maximum scattered field is important in EMC analysis, since it

could provide the worst-case estimation of unwanted radiated emission and/or crosstalk

noise between the conductors in the cable. Therefore, in the following case study we

estimate the maximum value of the scattered field in the near-field region, namely inside

the circle of radius R = 1.2λ. According to the solution in Figure 5.25, the maximum

value of the scattered field, normalized to the amplitude of the incident wave, is equal to∣∣ES
∣∣ /E0 = 1.604.

From the plotted results, it is clear that the DtN solution converges to the reference

value much faster than the PML one. In Figure 5.26, the condition number k defined as

in Equation (5.5) is reported, highlighting a similar behavior compared to the other two

scattering problems analyzed in this Chapter.

5.3.2 Scattering from a Cable Bundle in a Dielectric Coating

A Case-study 2 for the considered scattering problem is here analyzed, which has the

same geometry as Case-study 1, but assuming the wires surrounded by a dielectric of

relative permittivity are equal to εr = 4. The spatial distribution of the scattered field is

now given in Figure 5.28, giving a maximum value of the scattered field, normalized to
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Figure 5.24: Case-study 1: distribution of the amplitude of the scattered field, normalized

to that of the incident field. The axes x and y are normalized to the wavelength value.
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dent field, versus the number of mesh nodes: The DtN and PML solutions are compared

to the reference one
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Figure 5.26: (Cable bundle with dielectric). Condition number of the stiffness matrices

associated to the two numerical solutions versus the number of mesh nodes

DtN PML

w/o dielectric 511 2638

w dielectric 11573 59534

Table 5.1: Required number of mesh nodes (DoF) for 1% accuracy with and without the

dielectric

the amplitude of the incident wave, equal to
∣∣ES

∣∣ /E0 = 3.3505. The reference solution

is again obtained by using COMSOL Multiphysics R© with an accuracy below 10−4.

In this example, the computation of the reference solution requires about 16, 5 × 106

mesh elements. In Figure 5.28, we compare the DtN and PML numerical solution for

increasing value of Ndof , of the mesh nodes: Once again, the DtN solution converges to

the reference value much faster than the PML one. In Figure 5.29, the condition number

k is reported, highlighting a similar behavior compared to other cases.

Finally, the required values of number of mesh nodes (DoF) for getting an accuracy

of 1% is reported in Table 5.1 The computational gain in using the DtN is about a factor

5.
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Figure 5.27: Distribution of the amplitude of the scattered field, normalized to that of the

incident field. The axes x and y are normalized to the wavelength value
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Figure 5.28: Maximum value of the scattered field, normalized to amplitude of the inci-

dent field, versus the number of mesh nodes: The DtN and PML solutions are compared

to the reference one
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Figure 5.29: (Cable bundle with dielectric). Condition number of the stiffness matrices

associated to the two numerical solutions versus the number of mesh nodes
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CONCLUSIONS

In this Thesis, the Dirichlet-to-Neumann operator has been used to develop a fast and

accurate numerical model for computing the scattering of electromagnetic waves from a

material body. Specifically, the DtN operator has been used to impose an exact boundary

condition on the boundary of the computational domain. The underlying formulation is a

differential one.

Since the boundary conditions imposed by means of the DtN operator are exact, the

computational domain can be truncated rather close to the scatterer, thus reducing the

computational cost. The performances of the proposed method have been compared to

those of a state-of-the-art PML method. The comparison shows the superiority of the

DtN based approach on the PML one. Performances have been compared with reference

to two canonical geometries (a cylinder and a tube) and a practical configuration (bundle

cables).

The original contributions of this Thesis are multiple. The first one is the introduction

of the sparsification of the discrete representation of the DtN operator by means of two

approaches [58], [59], [60]: an analytical factorization of the DtN matrix and the compu-

tation of the (DtN) matrix-by-vector product through FFT (Chapter 4). Both methods rely

on the low rank property of the DtN matrix. The second contribution is the introduction of

the DtN operator for the internal problem (Chapter 2). This operator is useful for treating

problems where materials have cavities, as in the case of a tube (Chapter 4). The third

contribution is the extension of the theory from the 2D scalar Helmholtz to the scattering
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of electromagnetic wave from a z-invariant material, under either the TMz or TEz illumi-

nations. The material can be isotropic or anisotropic, homogeneous or inhomogeneous,

with either dielectric and/or magnetic properties. An exhaustive numerical campaign has

been developed in Chapter 5.



Appendix A

HELMHOLTZ’S EQUATION IN

CYLINDIRCAL COORDINATES

In cylindrical coordinates the Laplacian is given by (2D case)

∇2w =
1

r

∂w

∂r
+
∂2w

∂r2
+

1

r2

∂2w

∂θ2
(A.1)

and the Helmholtz differential equation becomes:

1

r

∂w

∂r
+
∂2w

∂r2
+

1

r2

∂2w

∂θ2
+ k2w = 0 . (A.2)

Let perform a separation of variables in (A.2) [61] as follows:

w(r, θ) = R(r)F (θ) (A.3)

where F (θ) is periodic of 2π.

Combining equation (A.2) to (A.3) gives

r2

R

(
d2R

dr2
+

1

r

dR

dr
+ k2R

)
= − 1

F

∂2F

∂θ2
(A.4)

so that the equation takes a separated form.

Since the solution must be periodic in theta θ from the definition of the circular cylin-

drical coordinate system, the solution to the second part of (A.4) must have a negative

separation constant
1

F

d2F

d2θ
= −m. (A.5)
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Equation (A.4) becomes:

r2d
2R

dr2
+ r

dR

dr
+ (k2r2 −m)R = 0 (A.6)

whose solution, if m>0, is

F (θ) = ane

√
mθ + bne

−
√
mθ (A.7)

where the exponentials are both periodic with period T = 2π/
√
m. To guarantee the

condition m>0, let assume

m = n2 with n ∈ N (A.8)

so that the solution (A.7) becomes:

F (θ) = ane
nθ + bne

−nθ . (A.9)

According to (A.8), equation (A.6) can be rewritten as:

r2d
2R

dr2
+ r

dR

dr
+ (k2r2 − n2)R = 0 (A.10)

and then
d2R

dr2
+

1

r

dR

dr
−
(
k2 − n2

r2

)
R = 0 . (A.11)

Equation (A.11) is just a modified form of the Bessel differential equation, which has a

solution:

R(r) = cnJn (rk) + dnYn (rk) (A.12)

where Jn(x) and Yn(x) are Bessel functions of the first and second kinds, respectively.

The general solution is therefore:

w(r, θ) =
∞∑

n=−∞

(cnJn (rk) + dnYn (rk))
(
ane

nθ + bne
−nθ) , n ∈ N (A.13)

or

w(r, θ) =
∞∑
n=0

(cnJn (rk) + dnYn (rk))
(
ane

nθ
)
, n ∈ N . (A.14)
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HANKEL FUNCTIONS

Two types of functions are known as Hankel functions and were introduced by H. Hankel

in 1869. These functions are more common as Bessel functions of the third kind, or

Cylinder functions. They are a linear combination of Bessel functions of the first and

second kinds [48].

H(1)
ν = Jν + Yν (B.1)

H(2)
ν = Jν − Yν (B.2)

where ν is here a complex parameter.

Jν is the Bessel functions of the first kind defined as

Jν(z) =
∞∑
0

(−1)m

m!Γ(m+ ν + 1)

(z
2

)2m+ν

(B.3)

where Γ(·) is the Gamma function. Yν is the Bessel function of the second kind also called

Weber functions, as they was introduced by H. M. Weber (1873), and also Neumann

functions after Carl Neumann and there are define as

Yν(z) =
Jν(z) cos(νz)J−ν(z)

sin(νz)
(B.4)

In particular, when ν 6∈ Z, we have the expressions

H(1)
ν (z) =

J−ν(z)− e−νπJν + (z)

 sin νπ
(B.5)

H(2)
ν (z) =

J−ν(z)− eνπJν + (z)

− sin νπ
(B.6)
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whereas for integer values n of ν analogous formulas hold if we replace the right hand

sides with their limits as n→ ν . This implies the important relations

H
(1)
−ν = eνπH(1)

ν (B.7)

H
(2)
−ν = e−νπH(2)

ν (B.8)

When ν = p is real, the Bessel functions of the first kind take real values on the real axis.

So it is obvious that, for ν = p real, H(1)
p and H(2)

p take complex conjugate values on the

real axis. Moreover,

p+1H(1)
p (x) and −p−1H(2)

p (−x) (B.9)

are real if x is real and positive. Hankel functions have simple asymptotic formulas for

large |z| when ν = p is real:

H(1)
p (z) ∼

√
2

πz
exp

(

(
z − pπ

2
− π

4

))
(B.10)

H(2)
p (z) ∼

√
2

πz
exp

(
−
(
z − pπ

2
− π

4

))
(B.11)

The Hankel functions of half-integral p = n + 1
2
, n ∈ Z ,can be expressed in terms of

elementary functions, in particular:

H(1)
p (z) ∼

√
2

πz

eiz


(B.12)

H(2)
p (z) ∼ −

√
2

πz

e−z


(B.13)

B.0.1 Recurrence relations

2H
′

ν(z) = Hν−1(z)−Hν+1(z) (B.14)

H
′

ν(z) = Hν−1(z)− (ν/z)Hν(z) (B.15)

H
′

ν(z) = −Hν+1(z) + (ν/z)Hν(z) (B.16)

H
(1)′

0 (z) = −H(1)
1 (z) and H

(2)′

0 (z) = −H(2)
1 (z) (B.17)
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Appendix C

Isoparametric shape functions

The details of (4.26) here has been reported.

2πΦi,n =

∫ θi0

θiN

θ
′ − θiN
θi0 − θiN

enθ
′

dθ
′
+

∫ θiP

θi0

(
1− θ

′ − θi0
θiP − θi0

)
enθ

′

dθ
′

=
e−nθ

i
N

θi0 − θiN

∫ θi0−θiN

0

αe−nαdα + e−nθ
i
0

∫ θiP−θ
i
0

0

(
1− α

θiP − θi0

)
e−nαdα

=
e−nθ

i
N

θi0 − θiN

[
− 1

2n2
e−nα(nα + 1)

]θi0−θiN
0

+ e−nθ
i
0

[
− 1

2n2

e−nα

θi0 − θiP
(nα− n(θiP − θi0) + 1)

]θiP−θi0
0

=
e−nθ

i
N

n2(θi0 − θiN)

[
e−n(θi0−θiN )(n(θi0 − θiN) + 1)− 1

]
+

e−nθ
i
0

n2(θi0 − θiP )

[
e−n(θiP−θ

i
0) + (n(θiP − θi0)− 1)

]
=

1

n2(θi0 − θiN)

[
e−nθ

i
0(n(θi0 − θiN) + 1)− e−nθiN

]
+

1

n2(θi0 − θiP )

[
e−nθ

i
P + e−nθ

i
N (n(θiP − θi0)− 1)

]
=

1

n2(θi0 − θiN)

[
e−nθ

i
0n(θi0 − θiN) + e−nθ

i
0 − e−nθiN

]
+

1

n2(θi0 − θiP )

[
e−nθ

i
P + e−nθ

i
0n(θiP − θi0)− e−nθi0

]
=

1

n2

[
ne−nθ

i
0 +

e−nθ
i
0 − e−nθiN
θi0 − θiN

+
e−nθ

i
P − e−nθi0
θiP − θi0

− ne−nθi0
]

=
1

n2

[
e−nθ

i
0 − e−nθiN
θi0 − θiN

+
e−nθ

i
P − e−nθi0
θiP − θi0

]

(C.1)
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