At present, mammography is the only not invasive diagnostic technique allowing the diagnosis of a breast cancer at a very early stage. A visual clue of such disease particularly significant is the presence of clusters of microcalcifications. Reliable methods for an automatic detection of such clusters are very difficult to accomplish because of the small size of the microcalcifications and of the poor quality of the digital mammograms. A method designed for this task is described. The mammograms are firstly segmented by means of the Tree Structured Markov random field algorithm which extracts the elementary homogeneous regions of interest on the image. Such regions are then submitted to a further analysis (based both on heuristic rules and Support Vector classification) in order to reduce the false positives. The approach has been successfully tested on a standard database of 40 mammographic images, publicly available.
Detection of microcalcification clusters in mammograms through TS MRF segmentation and SVM-based classification
D'ELIA, Ciro;MARROCCO, Claudio;MOLINARA, Mario;TORTORELLA, Francesco
2004-01-01
Abstract
At present, mammography is the only not invasive diagnostic technique allowing the diagnosis of a breast cancer at a very early stage. A visual clue of such disease particularly significant is the presence of clusters of microcalcifications. Reliable methods for an automatic detection of such clusters are very difficult to accomplish because of the small size of the microcalcifications and of the poor quality of the digital mammograms. A method designed for this task is described. The mammograms are firstly segmented by means of the Tree Structured Markov random field algorithm which extracts the elementary homogeneous regions of interest on the image. Such regions are then submitted to a further analysis (based both on heuristic rules and Support Vector classification) in order to reduce the false positives. The approach has been successfully tested on a standard database of 40 mammographic images, publicly available.File | Dimensione | Formato | |
---|---|---|---|
01334635.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
267.74 kB
Formato
Adobe PDF
|
267.74 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.