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Abstract 

At present, mammography is the only not invasive 

diagnostic technique allowing the diagnosis of a breast 

cancer at a very early stage. A visual clue of such disease 

particularly significant is the presence of clusters of 

microcalcifications. Reliable methods for an automatic 

detection of such clusters are very difficult to accomplish 

because of the small size of the microcalcifications and of 

the poor quality of the digital mammograms. A method 

designed for this task is described. The mammograms are 

firstly segmented by means of the Tree Structured Markov 

random field algorithm which extracts the elementary 

homogeneous regions of interest on the image. Such 

regions are then submitted to a further analysis (based 

both on heuristic rules and Support Vector classification) 

in order to reduce the false positives. The approach has 

been successfully tested on a standard database of 40 

mammographic images, publicly available.

1. Introduction 

Mammography is a radiological screening technique 

which makes it possible to detect lesions in the breast 

using low doses of radiation. At present, it represents the 

only not invasive diagnostic technique allowing the 

diagnosis of a breast cancer at a very early stage, when it 

is still possible to successfully attack the disease with a 

suitable therapy. For this reason, programs of wide mass 

screening via mammography for the female population at 

risk have been carried out in many countries. 

A visual clue of breast cancer particularly meaningful 

is the presence of clusters of microcalcifications. 

Microcalcifications are tiny granule-like deposits of 

calcium that appear on the mammogram as small bright 

spots. Their size ranges from about 0.1 mm to 0.7 mm, 

while their shape is sometimes irregular. Isolated 

microcalcifications are not, in most cases, clinically 

significant. However, the low quality of mammograms 

and the intrinsic difficulty in detecting likely cancer signs 

make the analysis particularly fatiguing, especially in a 

mass screening where a high number of mammograms 

must be examined by a radiologist in a day. In this case, a 

computer aided analysis could be very useful to the 

radiologist both for prompting suspect cases and for 

helping in the diagnostic decision as a “second reading”. 

The goal is twofold: to improve both the sensitivity of the 

diagnosis, i.e. the accuracy in recognizing all the actual 

clusters and its specificity, i.e. the ability to avoid 

erroneous detections. 

In the recent past, many approaches have been 

proposed for the automatic detection of clusters of 

microcalcifications, based on wavelets, Gaussian filtering, 

artificial neural networks, texture analysis, mathematical 

morphology and fuzzy logic. 

In this paper we present a novel method for detecting 

clustered microcalcifications on digital mammograms. 

The first step is a segmentation of the mammographic 

image by means of a Markov random field (MRF) model. 

The MRF approach to the segmentation gives the 

possibility of including an a priori knowledge on the 

segmentation results x. Indeed, we can consider x as a 

realization of a random field X whose density function 

p(x) models our a priori knowledge. A MRF-based 

approach has been previously used for detecting clustered 

microcalcifications [1]. 

Two critical points of such approach are the 

computational burden and the sensitivity of the results to 

the model parameters. For these reasons, we employ a 

tree-structured MRF-based segmentation [2], which 

address these topics and allows us to obtain a 

segmentation process fast and quite spatially adaptive 

since all field parameters are estimated locally. 

The regions obtained by the segmentation are 

successively examined in order to keep only the actual 

microcalcifications. Such analysis is accomplished by 

means of a two-stage, coarse-fine classification: the first 
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stage takes into account some constraints on the geometry 

and on the size of the regions. The second stage is 

performed by means of a Support Vector Machine [3] on 

more refined features. 

The approach has been experimented with a standard 

database of mammograms, obtaining encouraging results 

which confirmed its effectiveness. 

2. The Image Segmentation 

Mammogram segmentation can be easily formulated as 

a MAP estimation problem. Suppose each pixel of the 

image S belongs to one of C different classes, and let xs in 

{1,...,C} indicate the class of pixel s. Then x = {xs, s ∈ S}

is the segmentation of the image S in C classes. Of course, 

x is unknown, and must be recovered from the observable 

data y = {ys, s ∈ S} where ys is the value of the pixel s in 

the original mammogram. If we model all quantities as 

random fields, i.e. if we assume that x and y are particular 

realizations of two random fields X and Y, a natural way to 

carry out the segmentation process is to select x as the 

realization x̂  with the largest conditional probability 

given the data y, namely:  
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The last equality can be written since the prior probability 

p(y) does not affect the result. 

The image data are modeled as conditionally 

independent Gaussian, given the class, namely 
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As for the field of classes, it is convenient to model it 

as a MRF. Indeed, this is a reasonably simple, yet general, 

model which keeps into account the spatial dependencies 

in the image through the conditional probability that a 

pixel belongs to a given class given the classes of its 

neighbours. As a result, X has Gibbs distribution 
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where Z is a normalizing constant, and Vc(x,β) are 

potential functions, defined on suitable cliques c of the 

image, and depending on some hyperparameters. 

Given this model, the segmentation problem amounts 

to maximizing the function p(y|x)p(x) over x, where all the 

quantities C, µ1,…, µC, σ1,…, σC and β are in general 

unknown and must be estimated from the data. Due to the 

inherent complexity of this problem, in practical 

applications one must resort to heuristics that reduce the 

search complexity, and accept suboptimal solutions. 

To drastically reduce the search complexity, we adopt 

a tree-structured MRF model [2], where the full 

segmentation is obtained through a sequence of binary 

segmentations. More precisely, the whole image is 

associated to the root node t = 1 of a tree T, and is 

segmented in two regions using a binary MRF model. The 

two new regions, associated with the children of the root, 

t = 2 and t = 3, can be likewise segmented by means of 

newly defined local binary MRF, and the growth of the 

tree continues until a suitable stopping condition is met. 

Therefore, each node t of the tree is associated with a 

region of the image St, a field of observables Yt with 

realization yt, a binary MRF Xt with realization xt, and a 

set of parameters {µt, σt, βt}. The leaves of the tree 

partition the image in C disjoint regions, i.e. provide the 

desired segmentation. In [2] it is shown that the growth of 

the tree can be based exclusively on local decisions. In 

fact, a split gain Gt is associated with each leave t, 
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defined as the likelihood ratio between the two hypotheses 

of splitting the region in two (according to the realization 

xt of the local binary MRF) or leaving it unaltered. If the 

split gain is greater than 1, the region St is better described 

by a two-class field rather than by a uniform field. When 

all the leaves have split gain less than 1 the tree stops 

growing. The use of binary fields only, together with the 

locality of the splitting (the segmentation of a region does 

not depend on other regions) leads to a significant 

reduction of the computational complexity with respect to 

the case where a flat C-class MRF is used.  

3. The Region Classification 

After the segmentation step, the mammogram is 

subdivided in a huge number of homogeneous elementary 

regions. In order to identify the actual microcalcifications 

a classification phase is needed. To this aim, for each 

region both geometrical and textural features are extracted 

according to the characteristics of the microcalcifications. 

Features considered are: 

Area: number of pixels in a single region. 

Perimeter: number of pixels on the contour of a region. 

Compactness: Area/(Perimeter)
2
.

X Axis: maximum width along the horizontal axis. 

Y Axis: maximum height along the vertical axis. 

Elongation: (X Axis)/(Y Axis). 

Mean: the value µi of the i-th class to which the region 

belongs. This feature is provided directly by the 

segmentation process. 

Variance: the value σi of the i-th class to which the 

region belongs. This feature is provided directly by the 

segmentation process. 

Gradient on the original data: minimum, maximum and 

average value of the gradient strength on the region 
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contour pixels. Such feature is strictly related to the single 

region, but it is really significant only if the original data 

are sharp enough on the border of the region. 

Gradient on the mean: minimum, maximum and average 

value of the gradient evaluated as in the previous feature 

but in this case the value of the pixels is equal to the mean 

µi of the class which the region belongs to. In this way we 

obtain a feature related both to the class and to the region, 

which is significant even if the border of the region is not 

sharp. 

The analysis of the regions is performed by means of a 

two-stage, coarse-fine classification. Such scheme allows 

us to discard rapidly the regions less likely to be 

microcalcifications and to employ more sophisticated 

classifier and features only on the most difficult cases, 

thus improving the effectiveness of the whole 

classification process. Through the first stage all the 

regions with size, shape or brightness strongly different 

from those typical for a microcalcification are eliminated. 

In particular, a first criterion adopted in this phase 

discards all the regions with horizontal or vertical size 

greater than 10 pixels. In this way, we eliminate all the 

regions greater than 1.0 mm in at least one dimension: 

such regions cannot be microcalcifications because their 

size is excessive. In a similar way, also the regions with 

gradient on the mean less than or equal to zero are 

discarded. These regions, in fact, have a grey level very 

similar to their neighbourhood or even darker: this 

excludes the presence of a microcalcification, which 

should appear as a bright spot. 

After the first stage, we keep only the regions with 

characteristics acceptable for a microcalcification, but 

these still contain a large number of erroneous detections. 

In order to distinguish the actual microcalcifications, a 

further, more refined classification system is needed 

which, on the basis of the features previously described, is 

able to correctly discriminate between true and false 

detections. To this aim, Support Vector Machines 

represent one of the best two-class classifiers now 

available. SVM map the set of samples from the R
n
 input 

space to a high-dimensional feature space F and search 

the hyperplane separating the two classes with a maximum 

margin. To this aim, the learning algorithm of SVM 

considers a training data set containing, say, m samples ui,

each described by an n-dimensional vector; the samples 

are assigned to corresponding labels li = ±1, where the 

sign of the label indicates the class. The decision for a 

new sample z to be classified is based on the function: 

buzKlzf
m

i
iii +=

=1

),(
2

1
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where the parameters αi and b are evaluated during the 

learning phase and K(u,v) is a particular function, called 

kernel, which evaluates the scalar product between the 

projections of the two n-dimensional vectors u and v in 

the feature space F. It is worth noting that f(z) provides 

the signed distance of the point z from the optimal 

separating hyperplane; hence the decision is made 

according to the sign of f(z).

4. Experimental Results 

The system has been tested on a standard database, 

publicly available on Internet, provided by courtesy of the 

National Expert and Training Centre for Breast Cancer 

Screening and the Department of Radiology at the 

University of Nijmegen, the Netherlands. It contains 40 

digitized mammographic images composed of both 

oblique and craniocaudal views from 21 patients. Each 

mammogram has one or more clusters of 

microcalcifications marked by radiologists. The total 

number of clusters is 105, 76 of which are malignant and 

29 benign. All images have a size of 2048x2048 pixels 

and use 12 bits per pixel for the gray levels. A 

preprocessing phase was applied to convert them into an 8 

bit/pixel format by using the adaptive noise equalization 

described in [1]. The images obtained were firstly 

segmented using the TS-MRF algorithm with a number of 

classes equal to 80, thus achieving approximately 20,000 

regions for each image. After the segmentation the coarse 

classification was applied, reducing in this way from 

20,000 to 700, on average, the number of regions given in 

input to the SVM. The classifiers used in our experiments 

have been implemented by means of SVM
light

 tool [4], 

available at http://svmlight.joachims.org. 

The low number of clusters in the database made very 

difficult the training phase of the SVM. For this reason, 

we adopted a leave one out approach for our experiments. 

According to this procedure we accomplished 40 different 

training procedures, one for each image, each time using a 

different training set. To build it we assumed as positive 

samples all the microcalcifications we detected with the 

segmentation (according to the ground truth of the 

database) in 39 images and, as negative samples, a 

number of false regions, equal to the number of positives, 

chosen randomly among all the negatives that we had in 

input to the SVM. Then, for each training set we 

performed a test on the image we did not consider before. 

For our experiments we used the polynomial kernel 

( ) ( )21, +⋅= vuvuK ; moreover, all features given in input to 

the SVM were previously rescaled so as to have zero 

mean and unit standard deviation. 

The SVM performed very well on the true 

microcalcifications with a drop of 98% on the number of 

false regions. Nevertheless we still had some false regions 

per image. However, what is of medical interest in the 

breast cancer is the detection of microcalcifications 

clusters. To this aim, we adopted the criterion used in [1], 
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that is to consider the presence of a cluster if there are 

three or more microcalcifications within a region of 1 cm
2
.

So, in order to detect microcalcification clusters, we did 

not consider isolated regions that are usually produced by 

scratches or emulsion errors. 

Groups of detected regions consistent with the ground 

truth in the database were considered true positive (TP) 

clusters, otherwise they were counted as false positive 

(FP) clusters. We have compared our experimental results 

with those reported in [1], [5] and [6] since in these 

papers the same set of mammograms was used. In 

particular, [1] also employs an MRF model, while both [5] 

and [6] are based on a scale space approach; the latter also 

introduces a fuzzy logic based enhancement of the 

mammogram as a preprocessing step. Table 1 shows the 

results obtained. 

Table 1. The results obtained on the database. 

True Positives False Positives 
Img N 

TMS KAR CHE NET TMS KAR CHE NET

c01c 3 3 2 3 3 0 1 0 0 

c01o 3 3 2 3 3 0 0 0 0 

c02c 2 2 2 2 2 0 1 0 0 

c02o 1 1 1 1 1 1 2 0 3 

c03c 2 1 1 2 1 0 0 0 0 

c03o 1 1 1 1 1 0 1 0 0 

c04c 2 2 2 2 2 0 0 0 1 

c04o 2 2 2 2 2 0 0 2 0 

c05c 1 1 1 1 1 0 1 0 1 

c05o 2 2 2 2 1 0 0 0 0 

c06c 3 2 2 2 3 0 0 2 1 

c06o 2 2 2 1 2 0 3 0 0 

c07c 1 1 1 1 1 0 0 0 2 

c07o 1 1 1 1 1 0 1 0 1 

c08c 4 3 3 3 3 0 0 0 0 

c08o 6 2 4 4 6 0 1 4 0 

c09c 1 1 1 1 1 0 1 0 0 

c09o 2 1 2 2 1 1 1 0 1 

c10c 1 0 1 1 1 0 1 1 0 

c11c 1 1 1 1 1 2 8 0 4 

c11o 1 1 1 1 1 0 2 0 1 

c12c 15 11 9 13 13 2 2 3 1 

c12o 13 9 11 12 11 2 2 0 1 

c13c 1 1 1 1 1 0 0 0 1 

c13o 1 1 1 1 1 0 0 0 0 

c14c 2 2 2 2 2 0 0 0 0 

c14o 2 1 1 2 1 0 0 0 1 

c15c 1 1 1 1 1 1 1 0 0 

c15o 1 1 1 1 1 1 1 0 1 

c16c 1 1 1 1 1 0 0 0 0 

c16o 1 1 1 1 1 0 1 0 0 

c17c 9 7 9 7 8 0 1 1 2 

c17o 5 3 4 5 5 2 2 1 1 

c18c 2 2 2 2 2 0 1 0 1 

c18e 1 1 1 1 1 0 0 0 0 

c18o 1 1 1 1 1 0 4 0 1 

c19c 2 2 2 2 2 0 0 0 1 

c19o 3 3 3 3 1 0 0 0 0 

c20c 1 1 1 1 1 0 0 0 8 

c21o 1 1 1 1 1 0 3 0 5 

Total 105 83 88 95 93 12 42 14 39 

The first two columns contain the label of the 

mammogram in the database and the respective number of 

clusters; the successive columns show the results obtained 

by the four methods compared in terms of false positives 

and true positives. We have denoted with TMS the method 

here proposed, while KAR, CHE and NET designate the 

results obtained in [1], [6] and [5] respectively. We can 

observe that the proposed method does not reach the same 

results in the detection of TP clusters but gives the best 

results in terms of false positives. In particular, the 

comparison with the other MRF-based method shows how 

our method provides results slightly worse in terms of true 

positives, but significantly better for the false positives. 

Also the comparison with [5] shows the same behavior, 

while [6] exhibits a higher number of true positives and an 

amount of false positives near to what we obtain with our 

method. It is worth noting, however, that in [6] the tests 

have been performed in selected areas containing all the 

clusters of the image, while in all our tests the whole 

mammograms have been used. Such situation is more 

realistic, even though less favorable for the MRF-based 

segmentation. 

On account of these first encouraging results, future 

work will be aimed to improve the classification phase by 

including new features and by introducing a more suitable 

cluster validation method based also on topological 

criteria.
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