Logic can be shown to be a branch of the combinatorial calculus. In this way we can build logical spaces on the basis of a Boolean algebra. This allows us to pick up a finite number of irreducible atomic variables for each n–dimensional space. These variables have a characteristic binary ID being the neg–reversal of themselves. A theorem is proved showing that their number must be finite. Moreover, a second theorem gives us the algorithm for building sets of generators of the space. Finally, the algorithm for computing how many alternative bases there are for any n–dimensional logical space is provided.

Irreducible Statements and Bases for Finite–Dimensional Logical Spaces

AULETTA, Gennaro
2015-01-01

Abstract

Logic can be shown to be a branch of the combinatorial calculus. In this way we can build logical spaces on the basis of a Boolean algebra. This allows us to pick up a finite number of irreducible atomic variables for each n–dimensional space. These variables have a characteristic binary ID being the neg–reversal of themselves. A theorem is proved showing that their number must be finite. Moreover, a second theorem gives us the algorithm for building sets of generators of the space. Finally, the algorithm for computing how many alternative bases there are for any n–dimensional logical space is provided.
File in questo prodotto:
File Dimensione Formato  
Auletta_2015e.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Dominio pubblico
Dimensione 240.05 kB
Formato Adobe PDF
240.05 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/54102
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact