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Abstract
Logic can be shown to be a branch of the combinatorial calculus. In this way we can build logical spaces on the basis of
a Boolean algebra. This allows us to pick up a finite number of irreducible atomic variables for each n–dimensional space.
These variables have a characteristic binary ID being the neg–reversal of themselves. A theorem is proved showing that
their number must be finite. Moreover, a second theorem gives us the algorithm for building sets of generators of the space.
Finally, the algorithm for computing how many alternative bases there are for any n–dimensional logical space is provided.
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1. Introduction
Logic can be treated as a pure combinatorial calculus [1]. To
this purpose, I shall introduce the notion of logical space,
which can be conceived of to be an extension of the notion
of Boolean algebra [5], as far as it can be considered as a
vectorial space and the basic variables that span it as a kind of
logical basis. This may turn out to be especially relevant for
dealing with quantum computation, as far as quantum systems
understood as information processors display a combinatory
of possibilities [2]. The dimension of the logical space is
determined by the number of those basic variables necessary
and sufficient to logically span it. Variables are taken to
represent sets of objects but could also be taken to represent
statements; “composite” formula (expressing relations among
those variables) can be taken as collections of objects (classes)
or statements. This approach fits well with Category theory
[4][10]. In the following, I shall denote variables with capital
letters. Any collection of objects that is generated in such
a way (expressing relations among those basic variables) is
represented by a dot in the space (or as a 0-D subspace). Each
one–dimensional (1D) space or subspace is constituted by
a line connecting a variable and its negation (tautology and

contradiction are extremal points and center, respectively, of
this line) that we can represent as a kind of vector (where
negation is represented as the opposite direction). Each 2D
space or subspace is a surface (embedded in a a circle, as we
shall see) constituted by all connections among the variables
of two different 1D spaces or subspaces, and this can be
represented in Cartesian plane, and so on. There are some
fundamental numbers to consider that characterize any logical
space:

• n is the number of basic variables that span the space
and determine the dimension of the space.

• m = 2n is the number of truth–value assignments that
determine the truth–table. In any space, all collections
of objects are represented by a sequence of m 0s an
1s representing falsity and truth, respectively: the ba-
sic variables spanning an n–dimensional space have m
“slots” that can be filled with 0s or 1s. I call any of these
Boolean bitstrings the binary ID of the collection of
objects in short.

• k = 2m is the overall number of collections of objects
that can be generated in such a space through relations
among the n variables.

Let us now introduce the basic operations. I shall make use
of the usual OR, AND, and NOT. In the following, OR is
represented by +, AND by absence of symbol, negation by the
ordinary symbol for set complementation (X ′ is the negation
of X). For instance, XY denotes X AND Y while X ′ +Y
denotes NOT X OR Y . Negation exchanges the 0s and 1s
in a binary ID. In the 4D space (where m = 16, see Tab. 5)
the collection of objects XY is identified by the binary ID
0000000000001111, and its negation, i.e. (XY )′ = X ′+Y ′

is identified by 1111111111110000. The reader may easily
check this by summing (or multiplying) binary IDs column
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by column, where the outputs are shown in Tab. 1. Note that
I have added also the operations of subtraction (AND NOT)
and division (OR NOT).

Now, I introduce two additional logical operators first
formulated in [8]. The first one can be called reversal operator
and corresponds to inversion in the theory of groups: as we
shall see, the identity elements are 0 and 1 [10, Sec. 3.2].
The reversal operator transforms e.g. XY into Y ′X ′ (or X ′Y ′,
due to the commutativity of AND) or X +Y into Y ′+X ′ (or
X ′+Y ′, due to the commutativity of OR). Let us write e.g.
the first transformation as (XY )−1 =Y ′X ′. It owes its name to
the fact that the effect of the reversal operator is to reverse the
binary ID For instance, recalling that the binary ID of XY in
the 4D space is 0000000000001111, the binary ID of (XY )−1

is 1111000000000000. Note that

(XY )(XY )−1 = 0 and (X +Y )+(X +Y )−1 = 1, (1)

where 0 and 1 are contradiction and tautology represented by
a string of 0s and 1s, respectively.

Another important operation is performed by the neg–
reversal operator, that is an operation that is both negation
and reversal (it does not matter in which order the two opera-
tions are executed). In such a case, we have (XY )† = Y +X ,
where the dag symbolizes this operator. The action of the neg–
reversal operator on a binary ID is the following: it transforms
e.g. 0000000000001111 into 0000111111111111. Note that

(XY )(XY )† = XY and (XY )+(XY )† = X +Y. (2)

Both reversal and neg-reversal operations (as well as nega-
tions) are endomorphisms.

a b

c

d

e

f

g

h

Figure 1. Venn diagram for the 3D logical space. Note that the
grayscale is arranged according to the overlaps among areas: white
(0% of black) is empty area, pale gray (25% of black) is no overlap,
middle gray (50% of black) two sets overlap, dark gray (75% of
black) three sets overlap. A convention of this kind is maintained
also in the following.

2. Irreducible sets of objects
It is interesting to note that in any n–dimensional space there
is a set of Collections of objects (or statements) for which
negation and reversal coincide. These collections of objects
are characterized by a binary ID that is divided in two halves
whose the second half is the neg–reversal of the first one,
what means that any of these expressions is the neg–reverse of
itself, e.g., X† = X , whose binary ID in the 4D space can be
taken to be 0000000011111111 (see again Tab. 5). Another
way to say this is that for those variables we have X−1 = X ′.
In fact,

X = X† = (X ′)−1, and therefore X−1 = X ′. (3)

Note that the application of the general endomorphic neg–
reversal operation on these variables is in fact an automor-
phism. This can be taken as a definition of these variables.
Such variables are irreducible sets (or statements). To show
this, let us consider the 3D space (with k = 256). In this case,
a suitable truth–value table is displayed in Tab. 2 (see also
Fig. 1). Note that n (or 2n, depending on whether we con-
sider negations or not) represents the number of rows and m
the number of columns. Therefore, as mentioned, in the 3D
space there are 24 = 16 variables that are the neg–reversal of
themselves (in short, neg–reversal variables), where on each
row there is a variable and its negation (which is generated by
the corresponding variable by either negating or reversing it),
as displayed in Tab. 3. Note that the truth–values assignment
of Tab. 2 for X ,Y,Z corresponds to the collections of objects
16, 13, 11, respectively.
Let us now come back to issue of irreducibility. First, note that
any of the neg–reversal variables can be expanded in terms
of the other similar variables following the same algorithm.
For instance, in the 3D space, we can have the (among other
possible) expansions of the 16 neg–reversal variables of Tab.
4. Note that transformations A/D and D/A can be considered
as the inverse of each other, and this also true for couples
Y −C, Z−B, X −E. In fact, it turns out that reiterating the
same transformation, we get back the initial variable. For
instance:

X = E ′(BC)′(B′C′)′+BC = E ′(B′C+BC′)+BC

= XY Z′+XY ′Z +XY ′Z′+XY Z

= X(Y Z′+Y ′Z +Y ′Z′+Y Z)

= X . (4)

This shows that the expansions displayed in the previous
table are in fact resolutions of identity. In other words, any
transformation of a neg–reversal variable giving rise to another
neg–reversal variable, if reiterated, gives the former variable
back. Thus, neg–reversal variables display a characteristic
recursivity. This can be stated in a Lemma:

Lemma 2.1 Only neg-reversal variables have such a prop-
erty that makes of them sets that cannot be reduced to collec-
tions of other sets in the space they occupy and the only ones
in that space.

Proof: In fact, for a variable to be irreducible in this sense
is an immediate consequence of its neg–reversibility (or also
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Sum 0+0 = 0 0+1 = 1 1+0 = 1 1+1 = 1
Product 0×0 = 0 0×1 = 0 1×0 = 0 1×1 = 1

Subtraction 0−0 = 0 0−1 = 0 1−0 = 1 1−1 = 0
Division 0 : 0 = 1 0 : 1 = 0 1 : 0 = 1 1 : 1 = 1

Table 1. The four basic logical operations.

self–duality). It may be noted that the transformations of
Tab. 4 and their reversals are the analogous of the unitary
Hadamard transformations which express reversibility under
reiteration (they are the reversal of themselves) [3, Sec. 17.7].

In other words, the set NR(n) of the neg–reversal variables
gives rise to an endomorphism such that the following diagram
(for the 3D case) totally commutes:

X Y Z

A B C

H(X ,A)

F(X ,Y )

H(Y,B)

F(Y,Z)

H(Z,C)

F(A,B) F(B,C)

Thus, for all X ,A ∈ NR(n), variables Y,Z,B,C ∈ NR(n) exist
such that we have the Hadamard morphisms

H(X ,A) : X −→ A, H(Y,B) : Y −→ B, H(Z,C) : Z −→C,

and the four F morphisms having the form

F(X ,Y ) : X −→ Y := X −→ XY +Y = Y.

Note that the inverse morphism F−1(X ,Y ) applied to Y gives
XY +X = X . These two transformations can be generalized
to any nD spaces as shown in the diagram (5). �

A1 A2 A3 . . . An−1 An

B1 B2 B3 . . . Bn−1 Bn

H(A1,B1)

F(A1,A2) F(A2,A3)

H(A2,B2) H(A3,B3)

F(An−1,An)

H(An−1,Bn−1 H(An,Bn)

F(B1,B2) F(B2,B3) F(Bn−1,Bn) (5)

variables abcd efgh
X 0000 1111
Y 0011 0011
Z 0101 0101
X ′ 1111 0000
Y ′ 1100 1100
Z′ 1010 1010

Table 2. Truth–value assignment in the 3D space. The letters a,b,
c, . . . denote joint–value assignments for the 3 variables. The first
and last one a denote contradiction (here, a) and tautology (here, h).

# abcd efgh # abcd efgh
1 1111 0000 16 0000 1111
2 1110 1000 15 0001 0111
3 1101 0100 14 0010 1011
4 1100 1100 13 0011 0011
5 1011 0010 12 0100 1101
6 1010 1010 11 0101 0101
7 1001 0110 10 0110 1001
8 1000 1110 9 0111 0001

Table 3. Neg–reversal variables in the 3D logical space.

1 X ′ = E(BC)′(B′C′)′+B′C′ 16 X = E ′(BC)′(B′C′)′+BC
2 A′ = D(XZ)′(X ′Z′)′+X ′Z′ 15 A = D′(XZ)′(X ′Z′)′+XZ
3 B′ = Z(XY )′(X ′Y ′)′+X ′Y ′ 14 B = Z′(XY )′(X ′Y ′)′+XY
4 Y ′ =C(BE)′(B′E ′)′+B′E ′ 13 Y =C′(BE)′(B′E ′)′+BE
5 C′ = Y (XZ)′(X ′Z′)′+X ′Z′ 12 C = Y ′(XZ)′(X ′Z′)′+XZ
6 Z′ = B(CE)′(C′E ′)′+C′E ′ 11 Z = B′(CE)′(C′E ′)′+CE
7 D′ = X(BC)′(B′C′)′+B′C′ 10 D = X ′(BC)′(B′C′)′+BC
8 E ′ = X(Y Z)′(Y ′Z′)′+Y ′Z′ 9 E = X ′(Y Z)′(Y ′Z′)′+Y Z

Table 4. The 16 irreducible variables in the 3D space.

Note the fractal–like generation of truth values from a n−1
space to a n space: each slot (either 0 or 1) of a variable’s ID
of the (n−1)D space doubles for the ID of a corresponding
variable (to which we assigns the same label) in the nD space.
In fact, each column of Tab. 2 is now doubled. For instance,
from the 3D X whose ID is 0000 1111 we obtain the 4D
X whose ID is 0000 0000 1111 1111. In other words, the
whole of the collections of objects of any n–dimensional space
represent a monoid M = (List(X),++) without empty list
that is generated by the set X = {0,1} thanks to the operation
of list concatenation ++ [10, Secs. 3.1,4.2]; n represents
the length of the list for any n–dimensional space. On the
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variables abcd efgh ijkl mnop
X 0000 0000 1111 1111
Y 0000 1111 0000 1111
Z 0011 0011 0011 0011
Φ 0101 0101 0101 0101
X ′ 1111 1111 0000 0000
Y ′ 1111 0000 1111 0000
Z′ 1100 1100 1100 1100
Φ′ 1010 1010 1010 1010

Table 5. Truth–value assignment in the 4D space.

other hand, each n–dimensional space represents a group
(G,e+,e×,+,×, f−1) with buffer 2n and identities e+ = 0
and e× = 1 for disjunction (sum) + and conjunction (product)
×, respectively. Both e+ and e× are identities for reversal
f−1.

Let us consider as a further example the 4D space (with
k = 256× 256 = 65,536). For the 4D space, a truth–value
table can be drawn as in Tab. 5. As mentioned, the number l
of atomic variables for the 4D space is 28 = 256 (where the
fractal–like structure is again evident: note in particular that
the first half of the following IDs coincides with the IDs of
the 256 collections of objects of the 3D space), as displayed
in Tab. 9 (see at the end of the paper).

The truth–values assignment of Tab. 5 corresponds to
variables 256, 241, 205, 171 for X ,Y,Z,Φ, respectively. Now,
it is cumbersome but conceptually easy to verify that each of
those sets is a transformation of the basic variables in a way
that is again a resolution of identity. We need to generalize
to n dimensions the algorithm displayed in Tab. 4 for the 3D
space. This can be done in this way:

Lemma 2.2 All Hadamard like transformations in any logi-
cal space of n dimension have the general form

X1 = X ′2(X3Y4 · · ·Xn)
′(X ′3X ′4 · · ·X ′n)′+X3X4 · · ·Xn. (6)

The lemma is self–evident. The formula immediately
generates the Hadamard–like transformations H for the 4D
space. For instance, the Set 129 above, let us call it variable A,
can be expanded as X ′(Y ZΦ)′(Y ′Z′Φ′)′+Y ZΦ. Reciprocally,
we can express X (Variable 256 above) as a combination
of A (Variable 129), B = Y ′(XZΦ)′(X ′Z′Φ′)′+XZΦ (Vari-
able 144), C = Z′(XY Φ)′(X ′Y ′Φ′)′ + XY Φ (Variable 180),
and D = X(Y ′Z′Φ+Y ZΦ′)+Y (Z′Φ′+ ZΦ)+Y ′ZΦ′ (Vari-
able 215): X = A′(BCD)′(B′C′D′)′+BCD: see Tab. 6.

It is well known that Boolean algebra satisfies the three
requirements for a POSet, i.e.,

• Reflexivity: ∀X ,X → X (where the arrow means impli-
cation),

• Transitivity: ∀X ,Y,Z, if X→Y and Y → Z, then X→ Z,

• Antisymmetry: ∀X ,Y , if X → Y and Y → X , then X
and Y are logically equivalent.

B 0111 0000 1111 0001 ×
C 0100 1100 1100 1101 ×
D 0010 1001 0110 1011 =
BCD 0000 0000 0100 0001
(BCD)′ 1111 1111 1011 1110
B′ 1000 1111 0000 1110 ×
C′ 1011 0011 0011 0010 ×
D′ 1101 0110 1001 0100 =
B′C′D′ 1000 0010 0000 0000
(B′C′D′)′ 0111 1101 1111 1111
(BCD)′ 1111 1111 1011 1110 ×
(B′C′D′)′ 0111 1101 1111 1111 =
(BCD)′(B′C′D′)′ 0111 1101 1011 1110
A′ 1000 0000 1111 1110 ×
(BCD)′(B′C′D′)′ 0111 1101 1011 1110 =
A′(BCD)′(B′C′D′)′ 0000 0000 1011 1110
A′(BCD)′(B′C′D′)′ 0000 0000 1011 1110 +
BCD 0000 0000 0100 0001 =
X 0000 0000 1111 1111

Table 6. An example of reversed Hadamard–like
transformation in the 4D space.

The first two properties define a Preorder. However, it is also
well known that Boolean algebra is not a linear POSet [10,
Sec. 3.4], i.e. it does not satisfy

• Comparability: ∀X ,Y , either X → Y or Y → X .

The reason for that is precisely due to the existence of a
collection of irreducible atomic variables and of their relations
in terms of resolution of identity. However, each neg–reversal
variable selects a subspace in every n≥ 2 logical space that is
linear if we consider paths, which follow either meets (limits)
or joins (colimits) [1, Chap. 1], as displayed in Figs. 2–3.
(Note that such subspaces do not represent the n−1,n−2, . . .
proper subspaces of each n–dimensional space: for instance,
there are three 2D and six 1D subspaces in the 3D space [1,
Chap. 8].)

In other words, both Preorders and finite linear orders
are categories and the latter constitute some of the objects of
the former [10, Sec. 4.1]. This fully justifies the notion of
irreducible sets. Note that for any linear subspace, each lower
level node implying a higher level node is tautology while the
sum of all nodes for each level lower than the variable itself is
equivalent to the latter, while the product of all nodes of each
level higher than the variables gives the latter. For instance, in
the 3D space we have:

X(Y Z′+Y ′Z)→ (X +Y ′) = X +X ′,

XY +XZ +X(Y Z′+Y ′Z)+X(Y Z +Y ′Z′)+XZ′+XY ′ = X ,

(X +Y Z)(X +Y Z′)(X +Y ′Z)(X +Y ′Z′) = X . (7)

Note also that for every n–dimensional space the collections
of objects of half a linear subspace (that is, from contradiction
to the variable and from the latter to tautology) have the same
number as the collections of objects of the (n− 1)D space:
for instance, for the 3D space, the collections of objects of the
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YY’

XY XY’

X

X+Y X+Y’

Y+Y’

YY’

X’YX’Y’

X’

X’+YX’+Y’

Y+Y’Level 4-0

Level 3-1

Level 2-2

Level 1-3

Level 0-4 XX’

XY X’Y

Y

X+Y X’+Y

X+X’

XX’

XY’X’Y’

Y’

X+Y’X’+Y’

X+X’

Figure 2. In the 2D logical space we can select four linear subspaces individuated by the variables X ,X ′,Y,Y ′. Note in fact that every pair
of nodes being on one of the paths satisfy the comparability requirement. To help the reader, I have organized the space in levels: the first
figure is the number of 1s for that level while the second one is the number of 0s for that level. For instance, Level 3-5 collects all IDs with
three 1s and five 0s. Note that the whole structure has the form of a double diamond with the neg–reversal variable representing the joining
point between the two. Note that here (and for every further logical space) the linear subspaces generated by the two contradictory variables
(here X and X ′) cover all collections of objects of the two levels just above the contradiction and below the tautology (here Levels 1-7 and 7-1,
respectively).

linear half–network of X and X ′ are 16 (and similarly for any
other neg–reversal variable).

3. Spanning spaces Logically
As mentioned in the introduction, I shall introduce the notion
of logical space. First, we need to set the requirements for
defining what is a set of variables spanning the nD logical
space. If we like to preserve some notion of independent
vector in this context, each set spanning the space must satisfy
the following requirements:

(i) The vectors constituting the basis share pairwise the min-
imal number of 0s (or 1s) that is logically possible in
that space, which turns out to be m/2,

(ii) Due to the structure of the neg–reversal variables, they
must pairwise share m/4 truth values among the m/2
numbers constituting the first half of the ID and m/4
among the m/2 numbers constituting the second half of
the ID.

Now, I formulate the following lemma

Lemma 3.1 For any n–dimensional space, sets of n irre-
ducible atomic variables are sufficient to span the space.

Proof: Any n-dimensional space can be spanned in the fol-
lowing ways: by both (i) replacing a 0 by a 1 for each level
of the algebra up to the tautology (displaying m 1s), and (ii)
replacing a 1 by a 0 each level for each level of the algebra
down to the contradiction (displaying m 0s). Usually, it is
assumed that we span the Boole–Tarski–Lindenbaum algebra
by combining collections of objects, essentially making use
of disjunctions of basic variables as well as their disjunctions
for climbing the levels of the corresponding algebra and of
conjunctions of variables as well as their conjunctions for de-
scending the ladder of the algebra. In fact, it is an issue of pure

combinatorial calculus, as the generation of all collections
of objects of a logical space follows the Pascal triangle. For
instance, for a 3D space, the number k = 256 of collections of
objects is generated by the sequence 1, 8, 28, 56, 70, 56, 28,
8, 1, whose sum is 256, which can be expressed in binomial
coefficients as:

k =
8

∑
x=0

(
8
x

)
, (8)

where the variable number below can be taken to represent
the number of 0s (or of 1s) at each level. Generalizing to any
n dimensional space, we have

k(n) =
2n

∑
x=0

(
2n

x

)
, (9)

where I have expressed the dependence of k on n. The previous
equation is an instance of the general formula

2n

∑
x=0

(
2n

x

)
= 2

∑
n
y=0

(
n
y

)
. (10)

It is now evident that only collections of objects that are the
neg–reversal of themselves can span the space satisfying the
requirements (i) and (ii), that is, those collections of objects
are able to span their logical space. �

Obviously, any nD space can be spanned also with other
vectors. Nevertheless, neg–reversal variables are the only ones
that can span the space satisfying the two properties above.
Note, in particular, that the notion of logical basis is different
relative to the geometric notion of basis. In fact, we can take a
vectorial basis for e.g. the 3D logical space to be represented
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YY’ZZ’

XYZ XYZ’ XY’Z XY’Z’

XY XZ X(YZ’+Y’Z) X(YZ+Y’Z’) XZ’ XY’

X(Y+Z) X(Y+Z’) X(Y’+Z) X(Y’+Z’)

X

X+YZ X+YZ’ X+Y’Z X+Y’Z’

X+Y X+Z X+YZ’+Y’ZX+YZ+Y’Z’ X+Z’ X+Y’

X+Y+Z X+Y+Z’ X+Y’+Z X+Y’+Z’

Y+Y’+Z+Z’

YY’ZZ’

X’Y’Z’ X’Y‘Z X’YZ’ X’YZ

X’Y’ X’Z’ X’(YZ+Y’Z’) X’(YZ’+Y’Z) X’Z X’Y

X’(Y’+Z’) X’(Y’+Z) X’(Y+Z’) X’(Y+Z)

X’

X’+Y’Z’ X’+Y‘Z X’+YZ’ X’+YZ

X’+Y’ X’+Z’ X’+YZ’+Y’ZX’+YZ+Y‘Z’ X’+Z X’+Y

X’+Y’+Z’ X’+Y‘+Z X’+Y+Z’ X’+Y+Z

Y+Y’+Z+Z’Level 8-0

Level 7-1

Level 6-2

Level 5-3

Level 4-4

Level 3-5

Level 2-6

Level 1-7

Level 0-8

Figure 3. Two examples (X and X ′) out of the 16 neg–reversal variables of the 3D space. The other neg–reversal variables determine
similar subspaces.

by the m = 2n = 8 vectors [1, Chap 9]

1
0
0
0
0
0
0
0


,



0
1
0
0
0
0
0
0


,



0
0
1
0
0
0
0
0


,



0
0
0
1
0
0
0
0


,



0
0
0
0
1
0
0
0


,



0
0
0
0
0
1
0
0


,



0
0
0
0
0
0
1
0


,



0
0
0
0
0
0
0
1


, (11)

which correspond to the 8 areas a, b, c, . . . , h, as displayed
in Fig. 1. At the opposite, the vectors logically spanning the
space (due to the non–linearity of the space) are n = 3 (either
X ,Y,Z or X ′,Y ′,Z′), as in Tab. 2, and can be understood as
particular superpositions of the latter (those giving rise to
neg–reversal variables). The geometrical representation of
the logical space is therefore quite different. In fact, although
this basis expresses geometric linear independence of vectors,
it is not the same for the truth values, as it is evident by the
fact that all vectors above share pairwise six truth values. For
instance, the first two vectors can be logically represented by
expressions X ′Y ′Z′ and X ′Y ′Z, respectively.

Thus, the logical basis is n–dimensional while a corre-
sponding pure geometric basis would be 2n–dimensional on

the same space. Obviously, there is a morphism between
these two allowing to back–translate logical operations into
traditional geometric representation. Since all possible sets of
n neg–reversal variables of a n–dimensional space span the
whole space, these variables may be called the generators of
that space.

The previous lemma allows us to formulate the following
theorem:

Theorem 3.1 For any n–dimensional space the number of
irreducible atomic variables is finite and is equal to 2

m
2 .

Proof: According to the previous examination, all irreducible
atomic variables need to be neg–reversal variables. This
means that they are identified by half the sequence of their
binary ID. An immediate consequence is that, for each n–
dimensional space with k = 2m collections of objects, the
number of these atomic variables is l(m) = 2

m
2 , where l is

expressed as a function of m. Both m and l can be expressed
as functions of n in the following way:

l(n) =
2n−1

∑
x=0

(
2n−1

x

)
, (12)

m(n) =
n

∑
y=0

(
n
y

)
. (13)

This implies that their number is necessarily finite. � The
fact that the atomic variables have to be l(m) will be proved
below.

When the number n of the dimensions of the space grows
tending to infinity, the number 2

m
2 of irreducible atomic vari-
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Figure 4. The way in which we can represent the logical
spanning of 2D space. Note that we have here 5 circles (one of them
represented by the 0 point) corresponding to the 5 levels displayed
in Fig. 2.

ables relatively shrinks tending to 0, according to the series

1
2

m
2
=

1
22n−1 . (14)

For instance, for a 3D space, the irreducible variables repre-
senting atomic sets are 1/16 of all k collections of objects;
for a 4D space the irreducible variables are 1/256 of all k
collections of objects; for a 5D space, the irreducible atomic
variables are 1/65,536 of all k collections of objects, and so
on.

Up to now, I have dealt with vectorial representations of
the logical variables. In fact, such a logical space can also be
made isomorphic to the hypersphere of quantum–mechanical
density matrices, at least for the 3D case. First of all we need
to introduce vectors of different length λ ≤ 1, with equality
sign corresponding to tautology (symbolized by 1). Therefore,
the space is represented by a (n−1)–hypersphere of unitary
radius with spanning vectors with length of 1/2, hyper–surface
representing the tautology and center contradiction (symbol-
ized by 0). Note that any point can be reached from the latter
and we can reach the former from any point and the expres-
sions are always the same (a tautology). For instance, let us
take the simple case of the 2D space [Fig. 4]. Note that equiv-
alences and counter–valences are represented by bidirectional
vectors. Obviously, we can add vectors of different length as
well as addition of vectors of same length can give rise to a
vector of different length.

In particular, we can map irreducible statements like X ,X ′,
Y, . . . to reduced density matrices in that space, while state-
ments of the form X +Y to mixtures like P̂x + P̂y, where the
weights have no logical significance (also the phase differ-

1

0

Y

Y’

XY

X+Y

XY’

X+Y’

X’Y

X’+Y

X’Y’

X’+Y’

1

Figure 5. The linear subspace determined by Y and Y ′.

ences are logically irrelevant). In fact, some X are true or
some Y are true. Expressions like XY represent coincident
events (P̂xP̂y) while equivalences to entangled states, where, I
recall, also classical components are involved. Obviously, we
deal each time only with binary projections so that X and X ′

represent sets {P̂x, P̂x′}. Note finally that tautology 1 (repre-
senting, as we shall see, a pure state) is in fact a scalar and
covers the whole surface of the unitary sphere, while the con-
tradiction 0, as said, represents the center of the sphere. We
can pack in these logical spaces the linear subspaces shown
e.g. in Fig. 2 as displayed in Fig. 5. This allows us to under-
stand a reduced state as a linear subspace of a certain variable
X .

4. Alternative Sets and Bases
Note that for spaces of dimension n > 2 there are more sets
of n neg–reversal variables that span the whole space. How to
individuate this kind of basis (appropriately collecting genera-
tors)? In fact, many combinations of generators will not work.
In this logical context, I have defined such variables logically
spanning a logical space (generators) and constituting a log-
ical basis as a group of vectors sharing the minimal amount
of truth–values that is possible. The whole set of l(m) = 2

m
2

generators (all of the neg–reversal variables) of the nD space
can be partitioned in subsets such that all variables pertaining
to the set at least pairwise (but not all) share half of the truth
values. Let us call a spanning set any such subset regrouping
variables that at least pairwise share share half of the truth
values.

The number of the variables pertaining to this subset is
in general larger than the number of n variables sufficient to
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span the n–dimensional space. However, there are several
choices of n variables among those constituting such a subset
that are good for spanning the space (and the same is true for
other subsets). The basis requirement is the following lemma:
All n variables of a n–dimensional space constituting a basis
can share only two values: the first when all of them are false
and the last when all of them are true. This lemma gives us
the definition of “linearly independent” vectors constituting
a basis. I stress that an arbitrary number of neg–reversal
variables cannot share less that these two values, and therefore
this is the minimal amount that in a logical space is in general
possible.

Now, I shall show that the number of variables pertaining
to any spanning set of the n–dimensional space is equal to the
number of shared truth–values, i.e. 2n−1. The algorithm for
building the number of spanning sets for dimension n≥ 3 is
given by

s(n) =
m(n−1)

2
s(n−1), (15)

where s(n) denotes the number of sets for the nD logical
space.

I shall proceed in a constructive and iterative way, as an
instance of list concatenation. Note that here and in the follow-
ing we can consider only either classes or their complements
(i.e. either X or X ′), what reduces to half the whole amount
of computation. The first two cases (that are not covered by
the general formula) are quite easy. For a 1D logical space,
we have a single spanning set of a single variable (X) and its
negation, whose IDs are 01 and 10, respectively.

For the 2D logical space we have again one single span-
ning set with two variables. These variables and their nega-
tions are built by starting with the 1D variable and its negation
and multiplying all of them, generating four sequences, the
two 2D variables and their negations. Since we deal with
neg–reversal variables, these new variables are built by split-
ting the two terms to be multiplied into two parts, so that
we get: 0 01 1,0 10 1, 1 01 0, 1 10 0. In other words, we
have an “external” and “internal” part of the product. Let
us now establish a new and univocal convention for pick-
ing up the right variables. Let us denote with X0 the 1D
variable and with X1 = X and X2 = Y the two 2D variables.
These results could be written as (where the “external” part
comes first): X0⊗X0 = X1 = 0011, X0⊗X ′0 = X2 = 0101,
X ′0⊗X0 = X ′2 = 1010, and X ′0⊗X ′0 = X ′1 = 1100, where ⊗
denotes the operation of mixing IDs of neg–reversal variables
for getting IDs of higher–dimensional neg–reversal variables
(and not the AND operation).

For the 3D space, we proceed in the same way, getting
(where I do not consider the negations): X1.1 = X1⊗X1 =
00 0011 11, X2.1 = X1⊗X2 = 00 0101 11, X3.1 = X1⊗X ′2 =
00 1010 11, X4.1 =X1⊗X ′1 = 00 11000 11, X1.2 =X2⊗X1 =
01 0011 01, X2.2 = X2⊗X2 = 01 0101 01, X3.2 = X2⊗X ′2 =
01 1010 01, and X4.2 = X2⊗X ′1 = 01 1100 01. This gives
Tab. 7, from which (satisfying the criteria imposed for logical–
vector independency) we get the m/2 = 8 alternative bases,

which are built by some kind of rotation:

{X1.1,X4.1,X2.2},{X1.1,X4.1,X3.2},{X1.1,X2.2,X3.2},{X4.1,X2.2,X3.2};
{X2.1,X3.1,X1.2},{X2.1,X3.1,X4.2},{X2.1,X1.2,X4.2},{X3.1,X1.2,X4.2}.

Note that the two couples of each set that stem from either
X1 or X2 have the “internal” part that is the negation of each
other. This will be a common trait for all sets of any nD space
with n≥ 3.

variables # abcd efgh

Set 1

X1.1 16 0000 1111
X4.1 13 0011 0011
X2.2 11 0101 0101
X3.2 10 0110 1001

Set 2

X2.1 15 0001 0111
X3.1 14 0010 1011
X1.2 12 0100 1101
X4.2 9 0111 0001

Table 7. The two spanning sets of the 3D logical space.

This is evident by considering Venn diagrams [see Fig. 1],
but we can also use another type of diagrams that can also be
applied to spaces of dimension > 3 [see Fig. 6].

We can write the number of possible choices of 3 variables
for each spanning set of 4 variables (the Sets 1–2 of Tab. 7) as(

4
3

)
= 4. (16)

Note that any basis is such that the sum of the 1s (or 0s) of
each column follows the binomial coefficient:(

3
x

)
, with 0≤ x≤ 3, (17)

that is, one column with no 1, three columns with a 1, three
columns with 2 1s, one column with three 1s. This is general-
izable to any n–dimensional space as:(

n
x

)
, with 0≤ x≤ n. (18)

Note also that in each of the sets displayed in Tab. 7, each
column sums to 2 1s apart from the first and the last that sum
to 0 and 4, respectively. I recall that, for any n–dimensional
space, each set is indeed built in such a way that apart from the
first and last column repressing all 0s and all 1s, respectively,
we have 2n−2 columns with 2n−2 1s.

For the 4D space, we apply again the same procedure:
each of the 3D sixteen variables is multiplied by all the sixteen
variables, generating 256 variables with their negations. Then,
we have 16 sets, which are generated in the easiest way by the
variables deriving form those of the 3D space pertaining to
Sets 1 and 2, i.e. X1.1,X4.1,X2.2,X3.2 and X2.1,X3.1,X1.2,X4.2,
respectively, as displayed in Tab. 10.

Note that the procedure shown here proves the second
half of theorem 3.1. In fact, the general algorithm is that the
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number 2m(n) of variables (including their negations) for any
nD space is given by

2m(n) = 2m(n−1) ·2m(n−1) = 2l(m). (19)

Abstractly speaking, for the 4D space, we have for each set
of 8 items out of which we need to choose quadruplets the
following binomial coefficient:(

8
4

)
= 70. (20)

However, for computing the possible alternative bases for
each spanning set of the 4D space, I recall that we need to
consider that all the 4 variables need to share only the first and
the last digit for satisfying linear independence. This implies
that we cannot have in the same basis two couples whose
pairs have the 2nd and 3rd 4 numbers the negative of each
other. For instance, let us take Set 12, as in Tab. 8. Then, the
following six combinations are forbidden:

X6.2.1X11.2.1X7.3.1X10.3.1, X6.2.1X11.2.1X4.4.2X13.4.2,

X1.1.2X16.1.2X6.2.1X11.2.1, X7.3.1X10.3.1X4.1.2X13.1.2,

X7.3.1X10.3.1X1.4.2X16.4.2, X4.1.2X13.1.2X1.4.2X16.4.2,

with the result that the total number of the permissible com-
binations for a single spanning set is 64. Since the spanning
sets are 16, this makes the total number equal to 27 ·24 = 211.

X6.2.1 235 0001 0101 0101 0111
X11.2.1 230 0001 1010 1010 0111
X7.3.1 218 0010 0110 1001 1011
X10.3.1 215 0010 1001 0110 1011
X4.1.2 189 0100 0011 0011 1101
X13.1.2 180 0100 1100 1100 1101
X1.4.2 144 0111 0000 1111 0001
X16.4.2 129 0111 1111 0000 0001

Table 8. The 8 variables of Set 12 of the 4D space.

5. Symmetrization
We could proceed for higher–dimensional spaces in the pre-
vious way. However, there is a more fruitful method. We
may have noted that for the 3D space there is the “anomaly”
that we have a number of dimensions that is not a multiple
of 2 although it is still related to the number m of truth value
assignments. We can avoid this problem by symmetrizing the
space and use a 4D space (which is equal to m/4 = 22). In
that case we have two alternative bases represented by the two
sets of Tab. 7. Now, we can univocally map the two 2D vari-
ables to the two alternative bases and have the straightforward
transformations among variables shown in Tab. 11.

By multiplying any of the above couple of statements we
get the 28 statements of level 6.2, as displayed in Tab. 12.

In a similar way, we can build the other statements. For
instance, statement 11111000 of Level 5-3 is given by X ′1.1 +
X ′4.1X ′2.2 = X ′1.1+X ′4.1X ′3.2 = X ′1.1 = X ′2.2X ′3.2, which are in turn
equal to X ′2.1 +X ′3.1X ′1.2 = X ′2.1 +X ′3.1X ′4.2 = X ′2.1 +X ′1.2X ′4.2.

We can adopt this procedure for higher–dimensional spaces.
In the case of the 4D space, we use again a whole spanning set
to build a single basis. Therefore, we build a 8D logical space.
In such particular case, the advantage of the symmetrization
is less evident since 4D bases are already multiple of 2. Here,
things are also a little bit more complicated. For instance, we
can get (among many others) the substitutions of the Basis–1
variables displayed in Array (21).

Nevertheless, it can be helpful to proceed in this way
if we think to use the same method also for other spaces.
For example, we replace the 5D space by a 16D space and
proceed again in a similar way. The advantage is that we
avoid complex calculations of the number of alternative bases
for each nD space since thewy come to coincide with the
number of spanning sets, and both this number and that of
variables is easily computable with the previous algorithms.
Thus, for each nD space we build bases with a number of
elements (dimensions) that are multiples of 2 congruent with
the original (not symmetrized) dimension of the space: 20 for
the 1D space, 21 for the 2D space, 22 for the 3D space, 23

for the 4D space, 24 for the 5D space, and so on, where the
exponent for the non–symmetrized nD logical space is n−1.

6. Results
In short, the main results of this study are:

• For any finite logical space there is a finite number of
variables representing basic sets that cannot be reduced
to some collections of other sets, and their number is
l(n) = 22n−1 for any n–dimensional space, according
to Theorem 3.1.

• For any n > 2 logical space there are alternative sets of
atomic variables and each set displays actually resolu-
tions of identity of variables pertaining to other sets.

• These sets represent bases which can be regrouped in
spanning sets, whose number is l(n)/m(n) for any n–
dimensional space.

• By making us of symmetrization we circumvent the
problem of the calculation of bases as far as the number
of bases of each nD space is m/2.

• The formalism of logical spaces can help us to over-
come some known paradoxes in logic and set theory.

• It can be very helpful for classical and quantum compu-
tation.

• It can be helpful also in other fields of mathematics
where several computations of bases are necessary.
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7. Discussion
It might be noted that nobody, as far as I know, as thought
about the possibility to have irreducible variables for each
n–dimensional Boolean algebra. The reason is that the con-
struction of these Boolean algebras is currently made through
composition of sets of objects into new sets of objects through
conjunction and disjunction and not looking at the pure com-
binatorial aspects dealing with pure Boolean bitstrings. There
is a deep reason for that. Logic and its applications has been
traditionally treated as an algebra but without the arithmetic
substrate of mathematical algebra. However, it is only arith-
metics (i.e. computation with numbers) that allows us to use
mathematics in the powerful way that is its characteristics,
from physics to engineering. Now, if we ask what is the fea-
ture that makes arithmetics so powerful, the answer is very
simple: all rational numbers can be represented as dots in an
arithmetic space (a line) in which we can easily pick up the
successor of any arbitrary number, what allows to perform
operations on these numbers (the same is true for real numbers
although it is not always easy to discriminate between them).
It is not by chance that Peano individuated in the relation
“to be successor of” the distinctive feature of arithmetics [7].
Now, the building of a logical space allows us to individuate
the “position” in the logical space of each collection of ob-
jects (through its binary ID) in a way that is univocal, thus
representing a kind of logical arithmetics that establishes uni-
vocal relations among the collections of objects themselves
(whether they represent propositions or classes). The first to
have though about this possibility is K. Gödel [6], although
his numbers only have the purpose to represent statements and
not to be used for calculation: in fact are far more complex
that the binary IDs (they are like “Roman” cyphers relative to
decimal numbers).

This result is thus very surprising as far as it is commonly
assumed that any statement that appears atomic could in fact
be molecular, so that this distinction was understood to be
finally only a matter of convenience. At the opposite, I have
proved that there is a finite number of basic and irreducible
atomic variables for each nD logical space. In other words,
this sets specific limitations on the possible substitutions: only
generators of a n–dimensional space and their combinations
that give rise to other generators can be substituted to atomic
variables of that space. In fact, only atomic variables represent
sets in the logical space. Such an approach confirms the results
of Category theory for solving the known paradoxes in set
theory [9]. In fact, those paradoxes are built in such a way that
sets of objects can built one from the other as Chinese boxes
without taking care of their possible relations. If this non–
logical assumption is removed, also the paradoxes disappear.

Moreover, the previous formalism is very useful for both
classical and quantum computation: see also [1, Chap. 9]. In
fact, we can deal with problems of computation by renounc-
ing to implement a number of logical rules or connections
in a processor but rather making use of a simple logical or
dot–space. In fact, a logical space can be considered as the

analogue of a network, so that any computation running free
through this space will spontaneously establish connections
that are all logical. In a subsequent paper I shall show the
extensions of this point of view. Now, training the network by
repeated use in similar conditions (in a way that is reminiscent
of neural networks) allows us to establish connections that are
reinforced with time and become so the privileged ones. More-
over, the above results for bases easily allows implementing
quantum computation. In such a case, it would be suitable to
use negation, sum and AND NOT as basic operators. Finally,
the method shows here for computing generators and bases
for any nD logical space can also have wider applications to
mathematics.
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# abcd efgh ijkl mnop # abcd efgh ijkl mnop
1 1111 1111 0000 0000 256 0000 0000 1111 1111
2 1111 1110 1000 0000 255 0000 0001 0111 1111
3 1111 1101 0100 0000 254 0000 0010 1011 1111
4 1111 1100 1100 0000 253 0000 0011 0011 1111
5 1111 1011 0010 0000 252 0000 0100 1101 1111
6 1111 1010 1010 0000 251 0000 0101 0101 1111
7 1111 1001 0110 0000 250 0000 0110 1001 1111
8 1111 1000 1110 0000 249 0000 0111 0001 1111
9 1111 0111 0001 0000 248 0000 1000 1110 1111
10 1111 0110 1001 0000 247 0000 1001 0110 1111
11 1111 0101 0101 0000 246 0000 1010 1010 1111
12 1111 0100 1101 0000 245 0000 1011 0010 1111
13 1111 0011 0011 0000 244 0000 1100 1100 1111
14 1111 0010 1011 0000 243 0000 1101 0100 1111
15 1111 0001 0111 0000 242 0000 1110 1000 1111
16 1111 0000 1111 0000 241 0000 1111 0000 1111
17 1110 1111 0000 1000 240 0001 0000 1111 0111
18 1110 1110 1000 1000 239 0001 0001 0111 0111
19 1110 1101 0100 1000 238 0001 0010 1011 0111
20 1110 1100 1100 1000 237 0001 0011 0011 0111
21 1110 1011 0010 1000 236 0001 0100 1101 0111
22 1110 1010 1010 1000 235 0001 0101 0101 0111
23 1110 1001 0110 1000 234 0001 0110 1001 0111
24 1110 1000 1110 1000 233 0001 0111 0001 0111
25 1110 0111 0001 1000 232 0001 1000 1110 0111
26 1110 0110 1001 1000 231 0001 1001 0110 0111
27 1110 0101 0101 1000 230 0001 1010 1010 0111
28 1110 0100 1101 1000 229 0001 1011 0010 0111
29 1110 0011 0011 1000 228 0001 1100 1100 0111
30 1110 0010 1011 1000 227 0001 1101 0100 0111
31 1110 0001 0111 1000 226 0001 1110 1000 0111
32 1110 0000 1111 1000 225 0001 1111 0000 0111
33 1101 1111 0000 0100 224 0010 0000 1111 1011
34 1101 1110 1000 0100 223 0010 0001 0111 1011
35 1101 1101 0100 0100 222 0010 0010 1011 1011
36 1101 1100 1100 0100 221 0010 0011 0011 1011
37 1101 1011 0010 0100 220 0010 0100 1101 1011
38 1101 1010 1010 0100 219 0010 0101 0101 1011
39 1101 1001 0110 0100 218 0010 0110 1001 1011
40 1101 1000 1110 0100 217 0010 0111 0001 1011
41 1101 0111 0001 0100 216 0010 1000 1110 1011
42 1101 0110 1001 0100 215 0010 1001 0110 1011
43 1101 0101 0101 0100 214 0010 1010 1010 1011
44 1101 0100 1101 0100 213 0010 1011 0010 1011
45 1101 0011 0011 0100 212 0010 1100 1100 1011
46 1101 0010 1011 0100 211 0010 1101 0100 1011
47 1101 0001 0111 0100 210 0010 1110 1000 1011
48 1101 0000 1111 0100 209 0010 1111 0000 1011
49 1100 1111 0000 1100 208 0011 0000 1111 0011
50 1100 1110 1000 1100 207 0011 0001 0111 0011
51 1100 1101 0100 1100 206 0011 0010 1011 0011
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52 1100 1100 1100 1100 205 0011 0011 0011 0011
53 1100 1011 0010 1100 204 0011 0100 1101 0011
54 1100 1010 1010 1100 203 0011 0101 0101 0011
55 1100 1001 0110 1100 202 0011 0110 1001 0011
56 1100 1000 1110 1100 201 0011 0111 0001 0011
57 1100 0111 0001 1100 200 0011 1000 1110 0011
58 1100 0110 1001 1100 199 0011 1001 0110 0011
59 1100 0101 0101 1100 198 0011 1010 1010 0011
60 1100 0100 1101 1100 197 0011 1011 0010 0011
61 1100 0011 0011 1100 196 0011 1100 1100 0011
62 1100 0010 1011 1100 195 0011 1101 0100 0011
63 1100 0001 0111 1100 194 0011 1110 1000 0011
64 1100 0000 1111 1100 193 0011 1111 0000 0011
65 1011 1111 0000 0010 192 0100 0000 1111 1101
66 1011 1110 1000 0010 191 0100 0001 0111 1101
67 1011 1101 0100 0010 190 0100 0010 1011 1101
68 1011 1100 1100 0010 189 0100 0011 0011 1101
69 1011 1011 0010 0010 188 0100 0100 1101 1101
70 1011 1010 1010 0010 187 0100 0101 0101 1101
71 1011 1001 0110 0010 186 0100 0110 1001 1101
72 1011 1000 1110 0010 185 0100 0111 0001 1101
73 1011 0111 0001 0010 184 0100 1000 1110 1101
74 1011 0110 1001 0010 183 0100 1001 0110 1101
75 1011 0101 0101 0010 182 0100 1010 1010 1101
76 1011 0100 1101 0010 181 0100 1011 0010 1101
77 1011 0011 0011 0010 180 0100 1100 1100 1101
78 1011 0010 1011 0010 179 0100 1101 0100 1101
79 1011 0001 0111 0010 178 0100 1110 1000 1101
80 1011 0000 1111 0010 177 0100 1111 0000 1101
81 1010 1111 0000 1010 176 0101 0000 1111 0101
82 1010 1110 1000 1010 175 0101 0001 0111 0101
83 1010 1101 0100 1010 174 0101 0010 1011 0101
84 1010 1100 1100 1010 173 0101 0011 0011 0101
85 1010 1011 0010 1010 172 0101 0100 1101 0101
86 1010 1010 1010 1010 171 0101 0101 0101 0101
87 1010 1001 0110 1010 170 0101 0110 1001 0101
88 1010 1000 1110 1010 169 0101 0111 0001 0101
89 1010 0111 0001 1010 168 0101 1000 1110 0101
90 1010 0110 1001 1010 167 0101 1001 0110 0101
91 1010 0101 0101 1010 166 0101 1010 1010 0101
92 1010 0100 1101 1010 165 0101 1011 0010 0101
93 1010 0011 0011 1010 164 0101 1100 1100 0101
94 1010 0010 1011 1010 163 0101 1101 0100 0101
95 1010 0001 0111 1010 162 0101 1110 1000 0101
96 1010 0000 1111 1010 161 0101 1111 0000 0101
97 1001 1111 0000 0110 160 0110 0000 1111 1001
98 1001 1110 1000 0110 159 0110 0001 0111 1001
99 1001 1101 0100 0110 158 0110 0010 1011 1001

100 1001 1100 1100 0110 157 0110 0011 0011 1001
101 1001 1011 0010 0110 156 0110 0100 1101 1001
102 1001 1010 1010 0110 155 0110 0101 0101 1001
103 1001 1001 0110 0110 154 0110 0110 1001 1001
104 1001 1000 1110 0110 153 0110 0111 0001 1001
105 1001 0111 0001 0110 152 0110 1000 1110 1001
106 1001 0110 1001 0110 151 0110 1001 0110 1001
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107 1001 0101 0101 0110 150 0110 1010 1010 1001
108 1001 0100 1101 0110 149 0110 1011 0010 1001
109 1001 0011 0011 0110 148 0110 1100 1100 1001
110 1001 0010 1011 0110 147 0110 1101 0100 1001
111 1001 0001 0111 0110 146 0110 1110 1000 1001
112 1001 0000 1111 0110 145 0110 1111 0000 1001
113 1000 1111 0000 1110 144 0111 0000 1111 0001
114 1000 1110 1000 1110 143 0111 0001 0111 0001
115 1000 1101 0100 1110 142 0111 0010 1011 0001
116 1000 1100 1100 1110 141 0111 0011 0011 0001
117 1000 1011 0010 1110 140 0111 0100 1101 0001
118 1000 1010 1010 1110 139 0111 0101 0101 0001
119 1000 1001 0110 1110 138 0111 0110 1001 0001
120 1000 1000 1110 1110 137 0111 0111 0001 0001
121 1000 0111 0001 1110 136 0111 1000 1110 0001
122 1000 0110 1001 1110 135 0111 1001 0110 0001
123 1000 0101 0101 1110 134 0111 1010 1010 0001
124 1000 0100 1101 1110 133 0111 1011 0010 0001
125 1000 0011 0011 1110 132 0111 1100 1100 0001
126 1000 0010 1011 1110 131 0111 1101 0100 0001
127 1000 0001 0111 1110 130 0111 1110 1000 0001
128 1000 0000 1111 1110 129 0111 1111 0000 0001

Table 9. Atomic variables in the 4D logical space.
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# abcd efgh ijkl mnop # abcd efgh ijkl mnop

Set 1

X1.1.1 256 0000 0000 1111 1111

Set 2

X1.2.1 240 0001 0000 1111 0111
X16.1.1 241 0000 1111 0000 1111 X16.2.1 225 0001 1111 0000 0111
X4.4.1 205 0011 0011 0011 0011 X4.3.1 221 0010 0011 0011 1011
X13.4.1 196 0011 1100 1100 0011 X13.3.1 212 0010 1100 1100 1011
X6.2.2 171 0101 0101 0101 0101 X6.1.2 187 0100 0101 0101 1101
X11.2.2 166 0101 1010 1010 0101 X11.1.2 182 0100 1010 1010 1101
X7.3.2 154 0110 0110 1001 1001 X7.4.2 138 0111 0110 1001 0001
X10.3.2 151 0110 1001 0110 1001 X10.4.2 135 0111 1001 0110 0001

Set 3

X2.1.1 255 0000 0001 0111 1111

Set 4

X2.2.1 239 0001 0001 0111 0111
X15.1.1 242 0000 1110 1000 1111 X15.2.1 226 0001 1110 1000 0111
X3.4.1 206 0011 0010 1011 0011 X3.3.1 222 0010 0010 1011 1011
X14.4.1 195 0011 1101 0100 0011 X14.3.1 211 0010 1101 0100 1011
X5.2.2 172 0101 0100 1101 0101 X5.1.2 188 0100 0100 1101 1101
X12.2.2 165 0101 1011 0010 0101 X12.1.2 181 0100 1011 0010 1101
X8.3.2 153 0110 0111 0001 1001 X8.4.2 137 0111 0111 0001 0001
X9.3.2 152 0110 1000 1110 1001 X9.4.2 136 0111 1000 1110 0001

Set 5

X3.1.1 254 0000 0010 1011 1111

Set 6

X3.2.1 238 0001 0010 1011 0111
X14.1.1 243 0000 1101 0100 1111 X14.2.1 227 0001 1101 0100 0111
X2.4.1 207 0011 0001 0111 0011 X2.3.1 223 0010 0001 0111 1011
X15.4.1 194 0011 1110 1000 0011 X15.3.1 210 0010 1110 1000 1011
X8.2.2 169 0101 0111 0001 0101 X8.1.2 185 0100 0111 0001 1101
X9.2.2 168 0101 1000 1110 0101 X9.1.2 184 0100 1000 1110 1101
X5.3.2 156 0110 0100 1101 1001 X5.4.2 140 0111 0100 1101 0001
X12.3.2 149 0110 1011 0010 1001 X12.4.2 133 0111 1011 0010 0001

Set 7

X4.1.1 253 0000 0011 0011 1111

Set 8

X4.2.1 237 0001 0011 0011 0111
X13.1.1 244 0000 1100 1100 1111 X13.2.1 228 0001 1100 1100 0111
X1.4.1 208 0011 0000 1111 0011 X1.3.1 224 0010 0000 1111 1011
Y16.4.1 193 0011 1111 0000 0011 X16.3.1 209 0010 1111 0000 1011
X7.2.2 170 0101 0110 1001 0101 X7.1.2 186 0100 0110 1001 1101
X10.2.2 167 0101 1001 0110 0101 X10.1.2 183 0100 1001 0110 1101
X6.3.2 155 0110 0101 0101 1001 X6.4.2 139 0111 0101 0101 0001
X11.3.2 150 0110 1010 1010 1001 X11.4.2 134 0111 1010 1010 0001

Set 9

X5.1.1 252 0000 0100 1101 1111

Set 10

X5.2.1 236 0001 0100 1101 0111
X12.1.1 245 0000 1011 0010 1111 X12.2.1 229 0001 1011 0010 0111
X8.4.1 201 0011 0111 0001 0011 X8.3.1 217 0010 0111 0001 1011
X9.4.1 200 0011 1000 1110 0011 X9.3.1 216 0010 1000 1110 1011
X2.2.2 175 0101 0001 0111 0101 X2.1.2 191 0100 0001 0111 1101
X15.2.2 162 0101 1110 1000 0101 X15.1.2 178 0100 1110 1000 1101
X3.3.2 158 0110 0010 1011 1001 X3.4.2 142 0111 0010 1011 0001
X14.3.2 147 0110 1101 0100 1001 X14.4.2 131 0111 1101 0100 0001

Set 11

X6.1.1 251 0000 0101 0101 1111

Set 12

X6.2.1 235 0001 0101 0101 0111
X11.1.1 246 0000 1010 1010 1111 X11.2.1 230 0001 1010 1010 0111
X7.4.1 202 0011 0110 1001 0011 X7.3.1 218 0010 0110 1001 1011
X10.4.1 199 0011 1001 0110 0011 X10.3.1 215 0010 1001 0110 1011
X4.2.2 173 0101 0011 0011 0101 X4.1.2 189 0100 0011 0011 1101
X13.2.2 164 0101 1100 1100 0101 X13.1.2 180 0100 1100 1100 1101
X1.3.2 160 0110 0000 1111 1001 X1.4.2 144 0111 0000 1111 0001
X16.3.2 145 0110 1111 0000 1001 X16.4.2 129 0111 1111 0000 0001

Set 13

X7.1.1 250 0000 0110 1001 1111

Set 14

X7.2.1 234 0001 0110 1001 0111
X10.1.1 247 0000 1001 0110 1111 X10.2.1 231 0001 1001 0110 0111
X6.4.1 203 0011 0101 0101 0011 X6.3.1 219 0010 0101 0101 1011
X11.4.1 198 0011 1010 1010 0011 X11.3.1 214 0010 1010 1010 1011
X1.2.2 176 0101 0000 1111 0101 X1.1.2 192 0100 0000 1111 1101
X16.2.2 161 0101 1111 0000 0101 X16.1.2 177 0100 1111 0000 1101
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X4.3.2 157 0110 0011 0011 1001 X4.4.2 141 0111 0011 0011 0001
X13.3.2 148 0110 1100 1100 1001 X13.4.2 132 0111 1100 1100 0001

Set 15

X8.1.1 249 0000 0111 0001 1111

Set 16

X8.2.1 233 0001 0111 0001 0111
X9.1.1 248 0000 1000 1110 1111 X9.2.1 232 0001 1000 1110 0111
X5.4.1 204 0011 0100 1101 0011 X5.3.1 220 0010 0100 1101 1011
X12.4.1 197 0011 1011 0010 0011 X12.3.1 213 0010 1011 0010 1011
X3.2.2 174 0101 0010 1011 0101 X3.1.2 190 0100 0010 1011 1101
X14.2.2 163 0101 1101 0100 0101 X14.1.2 179 0100 1101 0100 1101
X2.3.2 159 0110 0001 0111 1001 X2.4.2 143 0111 0001 0111 0001
X15.3.2 146 0110 1110 1000 1001 X15.4.2 130 0111 1110 1000 0001

Table 10. The 16 spanning sets for the 4D space. Note that all columns in any set have four 1s and four 0s apart from the first
(eight 0s) and the last (eight 1s). The 16 spanning sets can be easily generated by focussing on the last eight values and first
considering the last four values of each row. All the possible combinations for four truth–values are 16: 1 for four 1s, 1 for four
0s, 4 for three 1s and one 1 and vice versa, 6 for two 1s and two 0s.

X1.1 = (X2.1 +X3.1)(X1.2 +X ′4.2) = (X2.1 +X1.2)(X3.1 +X ′4.2) = (X2.1 +X ′4.2)(X3.1 +X1.2),

X4.1 = (X2.1 +X3.1)(X ′1.2 +X4.2) = (X2.1 +X ′1.2)(X3.1 +X4.2) = (X2.1 +X4.2)(X3.1 +X ′1.2),

X2.2 = (X2.1 +X1.2)(X ′3.1 +X4.2) = (X2.1 +X4.2)(X ′3.1 +X1.2) = (X1.2 +X4.2)(X2.1 +X ′3.1),

X3.2 = (X ′2.1 +X1.2)(X3.1 +X4.2) = (X ′2.1 +X4.2)(X3.1 +X1.2) = (X1.2 +X4.2)(X ′2.1 +X3.1),

X2.1 = (X1.1 +X4.1)(X2.2 +X ′3.2) = (X1.1 +X2.2)(X4.1 +X ′3.2) = (X4.1 +X2.2)(X1.1 +X ′4.2),

X3.1 = (X1.1 +X4.1)(X ′2.2 +X3.2) = (X1.1 +X ′2.2)(X4.1 +X3.2) = (X4.1 +X ′2.2)(X1.1 +X3.2),

X1.2 = (X1.1 +X2.2)(X ′4.1 +X3.2) = (X1.1 +X3.2)(X ′4.1 +X2.2) = (X1.1 +X ′4.1)(X2.2 +X3.2),

X4.2 = (X ′1.1 +X2.2)(X4.1 +X3.2) = (X ′1.1 +X3.2)(X4.1 +X2.2) = (X ′1.1 +X4.1)(X2.2 +X3.2). (21)
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1 11111110 X ′1.1 +X ′4.1 +X ′2.2 = X ′1.1 +X ′4.1 +X ′3.2 = X ′1.1 +X ′2.2 +X ′3.2 = X ′4.1 +X ′2.2 +X ′3.2
X ′2.1 +X ′3.1 +X ′1.2 = X ′2.1 +X ′3.1 +X ′4.2 = X ′2.1 +X ′1.2 +X ′4.2 = X ′3.1 +X ′1.2 +X ′4.2

2 11111101 X ′1.1 +X ′4.1 +X2.2 = X ′1.1 +X ′4.1 +X3.2 = X2.2 +X3.2 +X ′1.1 = X2.2 +X3.2 +X ′4.1
X ′2.1 +X ′3.1 +X1.2 = X ′2.1 +X ′3.1 +X4.2 = X1.2 +X4.2 +X ′2.1 = X1.2 +X4.2 +X ′3.1

3 11111011 X ′1.1 +X ′2.2 +X4.1 = X ′1.1 +X ′2.2 +X3.2 = X4.1 +X3.2 +X ′1.1 = X4.1 +X ′2.2 +X3.2
X ′2.1 +X ′1.2 +X3.1 = X ′2.1 +X ′1.2 +X4.2 = X3.1 +X4.2 +X ′2.1 = X3.1 +X ′1.2 +X4.2

4 11110111 X ′1.1 +X ′3.2 +X4.1 = X ′1.1 +X2.2 +X ′3.2 = X4.1 +X2.2 +X ′1.1 = X4.1 +X2.2 +X ′3.2
X ′2.1 +X ′4.2 +X3.1 = X ′2.1 +X1.2 +X ′4.2 = X3.1 +X1.2 +X ′2.1 = X3.1 +X1.2 +X ′4.2

5 11101111 X1.1 +X3.2 +X ′4.1 = X1.1 +X ′2.2 +X3.2 = X ′4.1 +X ′2.2 +X1.1 = X ′4.1 +X ′2.2 +X3.2
X2.1 +X4.2 +X ′3.1 = X2.1 +X ′1.2 +X4.2 = X ′3.1 +X ′1.2 +X2.1 = X ′3.1 +X ′1.2 +X4.2

6 11011111 X1.1 +X2.2 +X ′4.1 = X1.1 +X2.2 +X ′3.2 = X ′4.1 +X ′3.2 +X1.1 = X ′4.1 +X2.2 +X ′3.2
X2.1 +X1.2 +X ′3.1 = X2.1 +X1.2 +X ′4.2 = X ′3.1 +X ′4.2 +X2.1 = X ′3.1 +X1.2 +X ′4.2

7 10111111 X1.1 +X4.1 +X ′2.2 = X1.1 +X4.1 +X ′3.2 = X ′2.2 +X ′3.2 +X1.1 = X ′2.2 +X ′3.2 +X4.1
X2.1 +X3.1 +X ′1.2 = X2.1 +X3.1 +X ′4.2 = X ′1.2 +X ′4.2 +X2.1 = X ′1.2 +X ′4.2 +X3.1

8 01111111 X1.1 +X4.1 +X2.2 = X1.1 +X4.1 +X3.2 = X1.1 +X2.2 +X3.2 = X4.1 +X2.2 +X3.2
X2.1 +X3.1 +X1.2 = X2.1 +X3.1 +X4.2 = X2.1 +X1.2 +X4.2 = X3.1 +X1.2 +X4.2

Table 11. The 8 statements of Level 7-1 for the 3D space.

1 11111100 = 11111110×11111101 X ′1.1 +X ′4.1 = X ′2.1 +X ′3.1
2 11111010 = 11111110×11111011 X ′1.1 +X ′2.2 = X ′2.1 +X ′1.2
3 11111001 = 11111101×11111011 X ′1.1 +X3.2 = X ′2.1 +X4.2
4 11110110 = 11111110×11110111 X ′1.1 +X ′3.2 = X ′2.1 +X ′4.2
5 11110101 = 11111101×11110111 X ′1.1 +X2.2 = X3.1 +X4.2
6 11110011 = 11111011×11110111 X ′1.1 +X4.1 = X1.2 +X ′4.2
7 11101110 = 11111110×11101111 X ′4.1 +X ′2.2 = X ′2.1 +X ′4.2
8 11101101 = 11111101×11101111 X ′4.1 +X3.2 = X ′2.1 +X1.2
9 11101011 = 11111011×11101111 X ′2.2 +X3.2 = X ′2.1 +X3.1
10 11100111 = 11110111×11101111 (X ′1.1 +X4.1 +X ′3.2)(X1.1 +X ′4.1 +X3.2) = (X ′2.1 +X3.1 +X ′4.2)(X2.1 +X ′3.1 +X4.2)
11 11011110 = 11111111×11011111 X ′4.1 +X ′3.2 = X ′3.1 +X ′4.2
12 11011101 = 11111101×11011111 X ′4.1 +X2.2 = X ′3.1 +X1.2
13 11011011 = 11111011×11011111 (X ′1.1 +X4.1 +X ′2.2)(X1.1 +X ′4.1 +X2.2) = (X ′2.1 +X3.1 +X ′1.2)(X2.1 +X ′3.1 +X1.2)
14 11010111 = 11110111×11011111 X2.1 +X ′3.1 = X2.2 +X ′3.2
15 11001111 = 11101111×11011111 X1.1 +X ′4.1 = X1.2 +X ′4.2
16 10111110 = 11111110×10111111 X ′2.2 +X ′3.2 = X ′1.2 +X ′4.2
17 10111101 = 11111101×10111111 (X ′1.1 +X ′4.1 +X3.2)(X1.1 +X4.1 +X ′3.2) = (X ′2.1 +X ′3.1 +X4.2)(X2.1 +X3.1 +X ′4.2)
18 10111011 = 11111011×10111111 X4.1 +X ′2.2 = X3.1 +X ′1.2
19 10110111 = 11110111×10111111 X4.1 +X ′3.2 = X2.1 +X ′1.2
20 10101111 = 11101111×10111111 X1.1 +X ′2.2 = X3.1 +X ′4.2
21 10011111 = 11011111×10111111 X1.1 +X ′3.2 = X2.1 +X ′4.2
22 01111110 = 11111110×01111111 (X ′1.1 +X ′4.1 +X ′3.2)(X1.1 +X4.1 +X3.2) = (X ′2.1 +X ′3.1 +X ′4.2)(X2.1 +X3.1 +X4.2)
23 01111101 = 11111101×01111111 X2.2 +X3.2 = X1.2 +X4.2
24 01111011 = 11111011×01111111 X4.1 +X3.2 = X3.1 +X4.2
25 01110111 = 11110111×01111111 X4.1 +X2.2 = X2.1 +X4.2
26 01101111 = 11101111×01111111 X1.1 +X3.2 = X3.1 +X1.2
27 01011111 = 11011111×01111111 X1.1 +X2.2 = X2.1 +X1.2
28 00111111 = 10111111×01111111 X1.1 +X4.1 = X2.1 +X3.1

Table 12. The 28 statements of Level 6-2.
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Figure 6. The two columns represent the two spanning sets for
the 3D space displayed in Tab. 7. The first 4 rectangles in each
column are the 4 generators pertaining to the set. The 4 squares
constituting the first row of each rectangle are the areas a,b,c,d,
while the 4 squares constituting the second row are areas e,f,g,h.
The second last rectangle in each column represents the combination
of the 4 variables of the set. Note that all spanning sets must keep
this character: 1 square white, 1 black and all others superposition
of half the number of variables, i.e. two areas. The last rectangle in
each column represents an example of basis: first, third and fourth
variable for the column on the left and the first 3 variables for the
column on the right (the first case corresponds to the assignment
displayed in Fig. 1). The grayscale reflects the intersection areas: in
particular, in the last two rectangles we can see no area, single area,
superposition of two areas, superposition of three areas, according to
the rule (17).


