This paper combines recent formulations of self- organization and neuronal processing to provide an account of cognitive dynamics from basic principles. We start by showing that inference (and autopoiesis) are emergent features of any (weakly mixing) ergodic random dynamical system. We then apply the emergent dynamics to action and perception in a way that casts action as the fulfillment of (Bayesian) beliefs about the causes of sensations. More formally, we formulate ergodic flows on global random attractors as a generalized descent on a free energy functional of the internal states of a system. This formulation rests on a partition of states based on a Markov blanket that separates internal states from hidden states in the external milieu. This separation means that the internal states effectively represent external states probabilistically. The generalized descent is then related to classical Bayesian (e.g., Kalman–Bucy) filtering and predictive codingVof the sort that might be implemented in the brain. Finally, we present two simulations. The first simulates a primordial soup to illustrate the emergence of a Markov blanket and (active) inference about hidden states. The second uses the same emergent dynamics to simulate action and action observation.
Cognitive Dynamics: From Attractors to Active Inference
AULETTA, Gennaro
2014-01-01
Abstract
This paper combines recent formulations of self- organization and neuronal processing to provide an account of cognitive dynamics from basic principles. We start by showing that inference (and autopoiesis) are emergent features of any (weakly mixing) ergodic random dynamical system. We then apply the emergent dynamics to action and perception in a way that casts action as the fulfillment of (Bayesian) beliefs about the causes of sensations. More formally, we formulate ergodic flows on global random attractors as a generalized descent on a free energy functional of the internal states of a system. This formulation rests on a partition of states based on a Markov blanket that separates internal states from hidden states in the external milieu. This separation means that the internal states effectively represent external states probabilistically. The generalized descent is then related to classical Bayesian (e.g., Kalman–Bucy) filtering and predictive codingVof the sort that might be implemented in the brain. Finally, we present two simulations. The first simulates a primordial soup to illustrate the emergence of a Markov blanket and (active) inference about hidden states. The second uses the same emergent dynamics to simulate action and action observation.File | Dimensione | Formato | |
---|---|---|---|
Friston-etal2014.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
2.2 MB
Formato
Adobe PDF
|
2.2 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.