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Cognitive Dynamics: From
Attractors to Active Inference
This paper provides a link from statistical dynamics of ergodic systems
to the inferential nature of human perception and ensuing
action on the world.

By Karl Friston, Biswa Sengupta, and Gennaro Auletta

ABSTRACT | This paper combines recent formulations of self-

organization and neuronal processing to provide an account of

cognitive dynamics from basic principles. We start by showing

that inference (and autopoiesis) are emergent features of any

(weakly mixing) ergodic random dynamical system. We then

apply the emergent dynamics to action and perception in a way

that casts action as the fulfillment of (Bayesian) beliefs about

the causes of sensations. More formally, we formulate ergodic

flows on global random attractors as a generalized descent on a

free energy functional of the internal states of a system. This

formulation rests on a partition of states based on a Markov

blanket that separates internal states from hidden states in the

external milieu. This separation means that the internal states

effectively represent external states probabilistically. The

generalized descent is then related to classical Bayesian (e.g.,

Kalman–Bucy) filtering and predictive codingVof the sort that

might be implemented in the brain. Finally, we present two

simulations. The first simulates a primordial soup to illustrate

the emergence of a Markov blanket and (active) inference

about hidden states. The second uses the same emergent

dynamics to simulate action and action observation.

KEYWORDS | Active inference; autopoiesis; cognitive; dynam-

ics; free energy; random attractor; self-organization

I . INTRODUCTION

‘‘How can the events in space and time which take
place within the spatial boundary of a living organism
be accounted for by physics and chemistry?’’VErwin
Schrödinger (1943).

This paper draws on two recent developments in
variational treatments of self-organization. The first is an
application to Bayesian inference and embodied percep-
tion in the brain [1]. The second is an attempt to
understand the nature of self-organization in random
dynamical systems [2]–[6], in particular, our work on
variational free-energy minimization [7]–[10]. Our prem-
ise is that biological self-organization is (almost) inevitable
and manifests as a form of active Bayesian inference. We
have previously suggested [11] that the events ‘‘within the
spatial boundary of a living organism’’ [6] may arise from
the very existence of a boundary or blanket, and that a
Markov blanket may be inevitable under local coupling
among dynamical systems. Here, we extend these argu-
ments to provide a seamless progression from the basic
behavior of random dynamical systems to formal (norma-
tive) accounts of the embodied or active inference that
underlies cognition. To do this, we formulate flows in
random dynamical systems in generalized coordinates of
motion, relate this formulation to (filtering) procedures
found in statistics and control theory, and then consider
what this (neuronal) filtering would look like in the brain.

Most treatments of self-organization in theoretical
biology use statistical thermodynamics or information
theory to address the peculiar resistance of biological
systems to the dispersive effects of external fluctuations
[3], [5], [6], [8], [12]–[15]. We have tried to explain
adaptive behavior in terms of minimizing an upper (free
energy) bound on the surprise (negative log likelihood) of
sensory samples [7], [16]. This minimization usefully
connects the imperative for biological systems to maintain
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their sensory states within physiological bounds with an
understanding of adaptive behavior in terms of inferring
the causes of those states [17].

In brief, under ergodic assumptions, the long-term
average of surprise is Shannon entropy. This means that
minimizing free energy, through selectively sampling
sensory input, places an upper bound on the entropy or
dispersion of sensory states. This enables biological
systems to resist the second law of thermodynamics, or
more exactly the fluctuation theorem that applies to open
systems far from equilibrium [18], [19]. However, because
negative surprise is also Bayesian model evidence, systems
that minimize free energy also maximize a lower bound on
the evidence for an implicit model of how their sensory
samples were generated. In statistics and machine
learning, this is known as approximate Bayesian inference
and provides a normative basis for the Bayesian brain
hypothesis [20]–[24]. This suggests that biological systems
act on the world to place an upper bound on the dispersion
of their sensed states, while using those sensations to infer
external states of the world. The resulting active inference
is closely related to formulations in embodied cognition
and artificial intelligence; for example, the perception
action cycle [25], the use of predictive information [26]–
[28], and homeokinetic formulations [29].

The ensuing (variational) free-energy principle has
been applied widely in neurobiology [30]. The motivation
for minimizing free energy has hitherto used the following
sort of argument: systems that do not minimize free energy
cannot exist, because the entropy of their sensory states
would not be bounded and would increase indefinitely, by
the fluctuation theorem [19]. Therefore, biological systems
must minimize free energy. Here, we turn the argument
around to suggest: any system that exists will appear to
minimize free energy and therefore engage in active
inference. What follows is an attempt to substantiate this
argument using (heuristic) proofs and simulations.

This paper comprises seven sections. In addition to the
Introduction, Section II considers the behavior of random
dynamical systems, under the assumption that their flow is
ergodic. The focus here is on flow in generalized
coordinates of motion, which allows us to express any
dynamics in terms of a Lagrangian or probabilistic model
of flow. We try to relate this formulation to fundamental
principles, such as the principle of stationary action that
underpins most classical and quantum mechanics.
Section III considers flows in systems with a Markov
blanket that separates, in a statistical sense, internal from
external states. We show that the dynamics of internal
states can be expressed as a generalized gradient descent
on a free-energy functional that is induced by a probability
density encoding beliefs about external states. This
generalized descent has two important implications. First,
it endows internal dynamics with a representational
interpretation. Second, the dynamics appears to place an
upper bound on the Shannon entropy of the internal states

and their Markov blanket, thereby preserving their struc-
tural and dynamical integrity. We consider this apparent
representational autopoiesis as active inference. Section IV
shows that the generalized descent is formally equivalent to
Bayesian filtering and predictive coding schemes that have
become popular for explaining neuronal dynamics. Section V
illustrates the emergence of a Markov blanket and provides
a proof of principle for the active inference, using simu-
lations of coupled dynamical subsystems with chaotic flow.
Section VI takes a complementary approach by using an
explicit generalized descent on variational free energy. This
allows one to interpret the dynamics in terms of action on
the environment and, crucially, inference about the agency
of that action. The final section, Section VII, includes the
conclusion.

II . GENERALIZED DYNAMICS

We consider (weakly mixing) ergodic random dynamical
systems described by stochastic differential equations of
the following form:

_~x ¼ fð~xÞ þ ~!: (1)

Here, the flow of generalized states fð~xÞ is subject to
random fluctuations ~!. Generalized states ~x ¼ ðx; x0;
x00; . . .Þ comprise the states per se, their motion, velocity,
acceleration, and so on. This is a slightly unusual con-
struction because the generalized motion D~x ¼ ðx0; x00;
x000; . . .Þ is not necessarily the motion of generalized states
_~x ¼ ð _x; _x0; _x00; . . .Þ. In essence, these equations specify
probability distributions over paths in generalized coordi-
nates of motion and can be regarded as a probabilistic
model of system dynamics that accommodates analytic
(smooth) fluctuations.

Because the system is ergodic (and weakly mixing) it
will, after a sufficient amount of time, converge to an
invariant set of states called a pullback or random global
attractor [31], [32]. The associated ergodic density pð~xjmÞ
for any system or model m is the solution to the Fokker–
Planck equation (also knows as the Kolmogorov forward
equation) [33] describing the time evolution of the
probability density over states

_pð~xjmÞ ¼ r % ðGr& fÞp: (2)

Here, the diffusion tensor G is the half the covariance
(amplitude) of the random fluctuations. Equation (2)
shows that the ergodic density depends upon flow, which
can always be expressed in terms of curl-free and
divergence-free components. This is the Helmholtz
decomposition (also known as the fundamental theorem
of vector calculus) and can be formulated in terms of an
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antisymmetric matrix Qð~xÞ ¼ &Qð~xÞT and a scalar poten-
tial Lð~xÞ that, as we will see below, plays a role of a
Lagrangian [34]

fð~xÞ ¼ ðQ & G ÞrLð~xÞ: (3)

Using this standard form [35], it is straightforward to show
that pð~xjmÞ ¼ expð&Lð~xÞÞ is the solution to the Fokker
Planck equation [16]

pð~xjmÞ ¼ exp &Lð~xÞð Þ) rp ¼ &prL) _p ¼ 0: (4)

This is an important result because it shows the flow can be
decomposed into a component that flows toward regions
with a higher ergodic density (the curl-free or irrotational
component) and an orthogonal (divergence-free or sole-
noidal) component that circulates on isocontours of the
ergodic density. Heuristically, this component can neither
act as source nor sink and essentially conserves volume.
The divergence-free flow plays a crucial role as the basis of
generalized motion that creates a space-filling attractor
that can have a low measure or volume. This can be seen
clearly by substituting the above decomposition into the
equations of motion to produce the following lemma.

Lemma (Generalized Descent): Any ergodic random
dynamical system can be expressed in the form of a
generalized gradient descent

_~x ¼ D~x& G %rLð~xÞ þ ~!: (5)

Proof: By construction, the divergence of generalized
motion r % ~x ¼ @x0=@xþ @x00=@x0 þ . . . ¼ 0 is zero,
which means generalized motion corresponds to diver-
gence-free flow

D~x ¼QrLð~xÞ)
fð~xÞ ¼ ðQ & G ÞrLð~xÞ ¼ D~x& G %rLð~xÞ: (6)

Substitution into (1) gives (5). g

Remarks: In short, the generalized motion D~x corre-
sponds to the conservative divergence-free flow. Intuitive-
ly, this formulation casts motion as a stochastic gradient
ascent in a frame of reference that moves with the
generalized motion _~x& D~x ¼ &G %rLð~xÞ þ ~!. The gen-
eralized descent lemma is quite important for our purposes.
It shows that one can either specify a system probabilis-
tically in terms of its equations of motion [see (1)] or a
Lagrangian [see (5)]. Sections V and VI illustrate the

emergent properties of random dynamical systems using
these complementary formulations of flow.

Heuristically, one can picture the flow as a drift toward
regions of high ergodic density in a direction that is
orthogonal to the divergence-free flow. When the flow is
conservative, one recovers classical equations of motion
because G ¼ ~! ¼ 0, and the motion of the generalized
states reduces to the (conservative) generalized motion of
the states: _~x ¼ D~x ¼ QrLð~xÞ. For example, with the
Lagrangian Lð~xÞ ¼ ’ðxÞ þ ð1=2Þx02, we have

Q ¼
0 1

&1 0

! "
)

_~x ¼D~x ¼ QrLð~xÞ ¼
x0

x00

! "
¼

x0

&@x’ðxÞ

! "
: (7)

This corresponds to Newtonian dynamics, where the
gradient of a potential energy ’ðxÞ exerts a force on a body
of unit mass. Fig. 1 provides an example using a double
well potential. The key thing to note here is that the
(classical) Lagrangian is just the (negative log) probability
of generalized states at (nonequilibrium) steady state. This
provides a nice connection between the most likely path
and the principle of stationary action.

Corollary (Principle of Stationary Action): The most likely
path x̂ðtÞ of any ergodic random dynamical system satisfies
the principle of stationary action !~"S ¼ 0, where action is
the path integral of the Lagrangian

S ¼
Zt¼T

t¼0

dtL ~xðtÞð Þ ¼ &
Zt¼T

t¼0

dt ln pð~xjmÞ: (8)

Proof: The most likely motion of any generalized
state is the motion under the most likely fluctuation
~! ¼ 0, where

_̂x ¼ Dx̂& G % @x̂Lðx̂Þ: (9)

Furthermore, the most likely generalized state minimizes
Lð~xÞ ¼ & ln pð~xjmÞ, such that (by the fundamental lemma
of variational calculus)

@x̂Lðx̂Þ ¼ 0()!x̂S ¼ 0() _̂x ¼ Dx̂:

This means that small variations around the most likely
path do not change action. Furthermore, the most likely
path is self-consistent in that its generalized motion is the
motion of the generalized states. g
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This formulation can be related to the path integral
formulation of quantum mechanics and, in particular, the
Feynman interpretation of the probability of a path in terms
of action [36]. Heuristically, one can see how the path
integral of the Lagrangian corresponds to the accumulated
(log) likelihood of that path [see (8)]. Interestingly the
Schrödinger equation can be recovered from the path
integral formulation, and both are essentially reformulations
of the Fokker Planck equation.

In summary, this section has formulated dynamical
random systems in generalized coordinates of motion and
has established the construct validity of this formulation in
terms of classical Lagrangian mechanics and path integral
formulations. The key result that we will call on below is
that any ergodic random dynamical system can be
formulated as a generalized ascent on the log likelihood

of its trajectories. In Section III, we will interpret this
likelihood as a marginal likelihood and see that any random
dynamical system can be interpreted as performing some
form of inference on itself.

III . DYNAMICS AND ACTIVE INFERENCE

This section pursues the following lemma: any ergodic
random dynamical system that possesses a Markov blanket
will appear to actively maintain its structural and
dynamical integrity. A Markov blanket is a set of states
that separates two other sets in a statistical sense. The term
Markov blanket was introduced in the setting of Bayesian
networks or graphs [37] and refers to the children of a set
(the set of states that are influenced), its parents (the set of
states that influence it), and the parents of its children.

A Markov blanket induces a partition of states into
internal states and external states that are hidden (insulated)
from the internal (insular) states by the Markov blanket.
For example, the surface of a cell may constitute a Markov
blanket separating intracellular (internal) and extracellular
(external) states [9], [11]. Statistically speaking, external
states can only be seen vicariously by the internal states,
through the Markov blanket. The Markov blanket can itself
be partitioned into two sets that are, and are not, children
of external states. We will refer to these as surface or
sensory states and active states, respectively. Put simply, the
existence of a Markov blanket S' A implies a partition of
states into external, sensory, active, and internal states:
~x 2 X ¼ Y ' S' A' R. External states cause sensory
states that influence, but are not influenced by, internal
states, while internal states cause active states that
influence, but are not influenced by, external states (see
Table 1). Crucially, the dependencies induced by Markov
blankets create a circular causality that is reminiscent of
the action–perception cycle (see Fig. 2). The circular
causality here means that external states cause changes in
internal states, via sensory states, while the internal states
couple back to external states through active states, such
that internal and external states cause each other in a
reciprocal fashion.

Equipped with this partition, we can now consider the
dependencies among states implied by the Markov
blanket, in terms of their equations of motion

f ð ~ ;~s; ~aÞ ¼ ðG & QÞr ~ ln pð ~ ;~s; ~a;~rjmÞ

fsð ~ ;~s; ~aÞ ¼ ðG & QÞr~s ln pð ~ ;~s; ~a;~rjmÞ
frð~s; ~a;~rÞ ¼ ðG & QÞr~r ln pð ~ ;~s; ~a;~rjmÞ
fað~s; ~a;~rÞ ¼ ðG & QÞr~a ln pð ~ ;~s; ~a;~rjmÞ: (10)

As noted in [11], there is something rather curious about
this flow: it seems as if the flow of each subset of states
knows the value of subsets that are hidden from it. For

Fig. 1. Lagrangian dynamics and flow. This schematic illustrates the

flows prescribed by a Lagrangian. The upper right panel shows the

Lagrangian as a function of a single state and its velocity. This example

illustrates a double well potential of the sort used in quantum

mechanics. The red line corresponds to a trajectory that circulates on

the isocontours of the Lagrangian, while drifting slowly downward.

This trajectory was obtained using low amplitude random fluctuations:

G ¼ ð1=64Þ. The upper right panel shows the same results but

plotted on the ergodic density. The lower panel illustrates the

decomposition of flow into orthogonal divergence-free components

(that follow the isocontours) and curl-free components that drift

toward regions with high ergodic density.
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example, the flow of internal states and action appear to be
guided by the ergodic density over hidden external states,
and yet their flow is not a function of hidden states. This
apparent paradox can be finessed by noting that the flow
from any state is the expected motion averaged over time.

By the ergodic theorem [38], this is also the flow averaged
over the external states, which does not depend on the
external state at any particular time. More formally, the
flow through any point ð~s; ~a;~rÞ in the space of the internal
states and their Markov blanket is [11]

frð~s; ~a;~rÞ ¼
Z

Y

pð ~ j~s; ~a;~rÞðG & QÞr~r ln pð~xjmÞd 

¼ðG & QÞr~r ln pð~s; ~a;~rjmÞ

fað~s; ~a;~rÞ ¼
Z

Y

pð ~ j~s; ~a;~rÞðG & QÞr~a ln pð~xjmÞd 

¼ðG & QÞr~a ln pð~s; ~a;~rjmÞ: (11)

This shows that the flow of internal and active states
performs a circuitous gradient ascent on the marginal
ergodic density over internal states and their Markov
blanket. This means that the internal states will appear to
respond to sensory fluctuations based on posterior beliefs
about underlying fluctuations in external states. We can
formalize this notion by associating these beliefs with a
probability density over external states qð ~ j~rÞ that is
encoded (parameterized) by internal states.

Lemma (Free Energy): for any random dynamical system
with a Markov blanket and Lagrangian Lð~xÞ ¼ & ln pð ~ ;~s;
~a;~rÞ, there is a free energy Fð~s; ~a;~rÞ that describes the flow
of internal and active states as a generalized descent

frð~s; ~a;~rÞ ¼ ðQ & GÞr~rF ¼ D~r& G %r~rF

fað~s; ~a;~rÞ ¼ ðQ & GÞr~aF ¼ D~a& G %r~aF

Fð~s; ~a;~rÞ ¼ Eq Lð~xÞ½ ) & H qð j~rÞ½ ): (12)

This free energy is a functional of a variational density
qð ~ j~rÞ, parameterized by internal states, that corresponds

Fig. 2. Markov blankets and the free-energy principle. These

schematics illustrate the partition of states into internal states and

hidden or external states that are separated by a Markov blanket,

comprising sensory and active states. The upper panel shows this

partition as it might be applied to a cell: where the internal states can

be associated with the intracellular states of a cell, while sensory states

become the surface states or cell membrane overlying active states

(e.g., the actin filaments of the cytoskeleton). The lower panel shows

the same dependencies but rearranged so that they can be related to

action and perception in the brain: where active and internal states

minimize a free energy functional of sensory states. The ensuing

self-organization of internal states then corresponds to perception,

while action couples brain states back to external states. See Table 1

for a definition of variables.

Table 1 Definitions of the Tuple ðW;Y ; S;A;L;p;qÞ Underlying Active Inference
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to the expected Lagrangian minus the entropy of the
variational density.

Proof: Using Bayes rule, we can rearrange the
expression for free energy in terms of a Kullback–Leibler
divergence [39]

Fð~s; ~a;~rÞ ¼ & ln pð~s; ~a;~rjmÞ
þ DKL qð j~rÞkpð j~s; ~a;~rÞ½ ): (13)

When qð ~ j~rÞ ¼ pð ~ j~s; ~a;~rÞ, the divergence term disap-
pears from (12) and we recover the ergodic flow in (11)

frð~s; ~a;~rÞ ¼ ðG & QÞr~r ln pð~s; ~a;~rjmÞ
fað~s; ~a;~rÞ ¼ ðG & QÞr~a ln pð~s; ~a;~rjmÞ: (14)

In other words, the ergodic flow ensures that the
variational density is the posterior density, such that the
variational density represents the hidden states in a Bayes-
optimal sense. g

Remarks: All this proof says is that if one interprets
internal states as parameterizing Bayesian beliefs about
external states, then the dynamics of internal and active
states can be described as a gradient descent on a
variational free-energy function of internal states and
their Markov blanket. Variational free energy was intro-
duced by Feynman to solve difficult integration problems
in path integral formulations of quantum physics [40]. This
is also the free-energy bound that is used extensively in
approximate Bayesian inference (e.g., variational Bayes)
[39], [41], [42]. The expression for free energy in (13)
discloses its Bayesian interpretation: the first term is the
negative log evidence or marginal likelihood of the internal
states and their Markov blanket. The second term is a
relative entropy or Kullback–Leibler divergence [43]
between the variational density and the posterior density
over external states. Because (by Gibbs equality) this
divergence cannot be less than zero, the internal flow will
appear to have minimized the divergence between the
variational and posterior density. In other words, the
internal states will appear to have solved the problem of
Bayesian inference by encoding posterior beliefs about
hidden (external) states, under a generative model
provided by the Lagrangian. This is known as exact
Bayesian inference because the variational and posterior
densities are identical. In Section IV, we will consider
approximate forms (under the Laplace assumption)
leading to approximate Bayesian inference. In short, the
internal states will appear to engage in Bayesian inference:
but what about action?

Because the divergence in (13) can never be less than
zero, free energy is an upper bound on the negative log

evidence. Now, because the system is ergodic, we have

Fð~s; ~a;~rÞ * & ln pð~s; ~a;~rjmÞ)
Et Fð~s; ~a;~rÞ½ ) * Et & ln pð~s; ~a;~rjmÞ½ ) ¼ H pð~s; ~a;~rjmÞ½ ):

(15)

This means that action will (on average) appear to place an
upper bound on the entropy of the internal states and their
Markov blanket. Together with the Bayesian modeling
perspective, this is exactly consistent with the good
regulator theorem (every good regulator is a model of its
environment) and related treatments of self-organization
[2], [5], [16], [44], [45]. Furthermore, we have shown
elsewhere [7], [30] that free-energy minimization is
consistent with information-theoretic formulations of
sensory processing and behavior [27], [46], [47]. Equation
(12) also shows that minimizing free energy entails
maximizing the entropy of the variational density, in
accord with the maximum entropy principle [48]. Finally,
because we have cast this treatment in terms of random
dynamical systems, there is an easy connection to
dynamical formulations that predominate in the neuros-
ciences; e.g., [45] and [49]–[51]. In summary, for any
ergodic random dynamical system, we have the following.

• The existence of a Markov blanket necessarily
implies a partition of states into internal states,
their Markov blanket (sensory and active states)
and external or hidden states.

• This partition endows internal states with the
apparent capacity to represent hidden states
probabilistically, so that they appear to infer the
hidden causes of sensory states (by minimizing a
free-energy bound on log Bayesian evidence). By
the circular causality induced by the Markov
blanket, sensory states depend on active states,
rendering inference active or embodied.

• Because active states change, but are not changed
by, hidden states (see Fig. 2), they will appear to
place an upper (free-energy) bound on the
dispersion (entropy) of internal states and their
Markov blanket. This means active states will
appear to maintain the structural and functional
integrity of the Markov blanket. See also [52].

In Section IV, we consider this dynamics from the point of
view of Bayesian (e.g., Kalman) filtering and its imple-
mentation in the brain in terms of predictive coding.

IV. BAYESIAN FILTERING AND
PREDICTIVE CODING

In Section III, we saw how the ergodic flow decomposes
into divergence and curl-free components, where the
divergence-free component corresponds to generalized
flow. This component cannot change the (free-energy
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bound on) log evidence or marginal likelihood, whereas
the curl-free component increases the marginal likelihood.
Readers familiar with time-series analysis will recognize
the formal similarity between these two components and
the prediction and update terms in Bayesian (e.g., Kalman)
filtering. In this section, we pursue this formal equivalence
and see how it can illuminate cognitive (neuronal)
dynamics, in terms of message passing in the brain.

The free-energy lemma means that we can express the
dynamics of internal and active states in terms of
variational free energy where (assuming random fluctua-
tions are small in relation to free-energy gradients)

_~r ¼D~r& G % @~rFð~s; ~a;~rÞ
_~a ¼D~a& G % @~aFð~s; ~a;~rÞ: (16)

This form reveals its close connection to inference
schemes used in the Bayesian inversion of state–space
models [53]. To illustrate this clearly, we will look at a
special case of generalized descent: under the (Laplace)
assumption that the variational density qð ~ j~rÞ ¼ Nð~"; CÞ is
Gaussian with sufficient statistics ~r ¼ f~"; Cg. Under this
assumption, the solution of (16) for the variational
precision is C&1 ¼ P ¼ @~"~"Lð~"Þ) @CF ¼ 0 [54]. This
means that free energy can be reduced to a function of the
variational mean (omitting constants)

F ¼ Lð"Þ þ 1

2
ln @~"~"Lð~"Þ
## ##: (17)

This provides an important simplification that enables us to
associate internal states ~" ¼ ~r with the variational or (ap-
proximate) posterior expectation of the hidden states, where

_~" ¼D~"& G % @~"Fð~s; ~a; ~"Þ
_~a ¼D~a& G % @~aFð~s; ~a; ~"Þ: (18)

The first equality is known as a generalized filter [53],
which has classical filtering as a special case. Classical
filtering under Markovian or Weiner assumptions is
equivalent to assuming the precision of the motion of
random fluctuations is zero. In this limiting case, one only
has to consider the states and their first derivative. This
means generalized filtering takes the form of (extended)
Kalman–Bucy filtering, with the usual prediction and
correction terms [55]

_" ¼"0 & G % @"Fðs; s0; "; "0Þ
_"0 ¼ & G % @"0Fðs; s0; "; "0Þ: (19)

Having established the formal connection to classical
Bayesian filtering, we now turn to hierarchical Bayesian fil-
tering and predictive coding of the sort that may underlie
cognitive dynamics in the brain.

A. Generalized Filtering and Predictive Coding
Generalized filtering is usually used to invert hierar-

chical models or systems of the following form:

s ¼ gð1Þ  ð1Þu ;  ð1Þv

$ %
þ !ð1Þu

_ 
ð1Þ
v ¼ f ð1Þ  ð1Þu ;  ð1Þv

$ %
þ !ð1Þv

..

.

_ 
ði&1Þ
u ¼ gðiÞ  ðiÞu ;  

ðiÞ
v

$ %
þ !ðiÞu

_ 
ðiÞ
v ¼ f ðiÞ  ðiÞu ;  

ðiÞ
v

$ %
þ !ðiÞv

..

.
(20)

Gaussian assumptions about the random fluctuations ~!
prescribe the likelihood and empirical priors on the gener-
alized motion of hidden states that define the Lagrangian or
generative model, where (suppressing action)

Lð~xÞ ¼ & ln pð ~ ;~sjmÞ

pð ~ ;~sjmÞ ¼
Y

i

p ~ 
ði&1Þ
u j ~ ðiÞu ;

~ 
ðiÞ
v

$ %
p

' D ~ 
ðiÞ
v j ~ 

ðiÞ
u ;

~ 
ðiÞ
v

$ %
p ~ 

ð1Þ
v jm

$ %

p ~ 
ði&1Þ
u j ~ ðiÞu ;

~ 
ðiÞ
v

$ %
¼N ~gðiÞ;SðiÞu

$ %

p D ~ 
ðiÞ
u j ~ 

ðiÞ
u ;

~ 
ðiÞ
v

$ %
¼N ~f

ðiÞ
;SðiÞv

$ %
: (21)

In hierarchical form, hidden states  ðiÞu 2  couple
hierarchical levels (where ~s ¼D ~ 

ð0Þ
u ) and the dynamics of

hidden states  ðiÞv 2  within each level confer memory on
the system. The ensuing generalized gradient descent on
free energy can then be expressed compactly in terms of
prediction errors, where (suppressing high-order terms)

_~"
ðiÞ
u ¼D~"ðiÞu &

@~"ðiÞ

@ ~"ðiÞu

% P ðiÞ~"ðiÞ & P ðiþ1Þ
u ~"ðiþ1Þ

u

_~"
ðiÞ
v ¼D~"ðiÞv &

@~"ðiÞ

@ ~"ðiÞv

% P ðiÞ~"ðiÞ

~"ðiÞu ¼ ~"ði&1Þ
u & ~gðiÞ ~"ðiÞu ; ~"ðiÞv

$ %

~"ðiÞv ¼D~"ði&1Þ
v & ~f

ðiÞ
~"ðiÞu ; ~"ðiÞv

$ %
: (22)
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Here, P ðiÞ is the precision (inverse covariance SðiÞ) of
random fluctuations at the ith level. This is known as
generalized predictive coding [56], with linear predictive
coding [57] as a special case. Predictive coding has become a
popular metaphor for message passing in the brain: In neural
network terms, (22) says that error units receive predictions
from the same hierarchical level ~"ði&1Þ

u and the level above
~"ðiÞu . Conversely, posterior expectations are driven by
prediction errors from the same level ~"ðiþ1Þ and the level
below ~"ðiÞu . These constitute bottom-up and lateral messages
that drive expectations toward a better prediction to reduce
the prediction error in the level below. This is the essence of
recurrent message passing between hierarchical levels to
suppress free energy or prediction error; see [56] for a
detailed discussion. This form of generalized filtering is used
routinely in the analysis of time-series data [53] and is much
more computationally efficient than equivalent sampling
schemes such as particle filtering. This efficiency is largely
due to the Laplace assumption that is inherent in schemes
like Kalman filters.

In neurobiological implementations of predictive
coding [58], the sources of bottom-up prediction errors
are thought to be superficial pyramidal cells that send
forward connections to higher cortical areas. Conversely,
predictions are conveyed from deep pyramidal cells by
backward connections, to target (polysynaptically) the
superficial pyramidal cells encoding prediction error [59].
Equation (22) shows how precision P ðiÞ plays an important
role in weighting the influence of prediction errors at any
particular level of the hierarchy. In other words, by
changing the precision on the prediction errors, one can
bias inference toward sensory information or top–down
predictions. In the current context, precision corresponds
to the gain of (superficial pyramidal) populations encoding
prediction error and has been discussed as mediating
attention and action selection [60].

B. Active Inference and Action
In neurobiological implementations of active infer-

ence, posterior expectations elicit action by sending
predictions down the hierarchy to be unpacked into
proprioceptive predictions at the level of (pontine) cranial
nerve nuclei and spinal cord. These engage classical reflex
arcs to suppress proprioceptive prediction errors and
produce the predicted motor trajectory, where (suppres-
sing generalized motion)

_a ¼ &@aF ¼ &@a~s % P ð1Þu ~"ð1Þu : (23)

The reduction of action to classical reflexes follows because
the only way that action can minimize free energy is to
change sensory (proprioceptive) prediction errors by chang-
ing sensory signals; cf., the equilibrium point formulation of
motor control [61]. In short, active inference can be regarded

as equipping a generalized predictive coding scheme with
classical reflex arcs. See Fig. 3.

In summary, the dynamics of internal states and their
Markov blanket of any ergodic random dynamical system can
be interpreted as performing generalized Bayesian filtering
of its sensory states. This provides an interesting perspective
on Bayesian filtering as finding the most likely path of
internal states that are coupled to hidden states through
sensory states. The key trick here is to render the internal
states a representation of hidden states through assuming a
particular parameterization of the variational density; for
example, the Laplace assumption. In neurobiological terms,
this can be implemented fairly simply with predictive coding
that, when equipped with classical reflexes, provides a
principled metaphor for action and perception in the brain.
We now turn to simulations of generalized dynamics to
illustrate the emergence of inferential self-organization at
the level of simple cell-like structures and at the level of
cognitive dynamics in the brain.

V. ACTIVE INFERENCE AND
SELF-ORGANIZATION

Section II suggested that dynamical systems can either be
specified in terms of their equations of motion or in terms
of a generalized descent on a Lagrangian. In this section,
we take some arbitrary equations of motion and examine
the ensuing dynamics for evidence of active inference,
using the criteria established at the end of Section III. In
Section VI, we will take the complementary approach and
examine the behavior of systems specified by a Lagrangian
or probabilistic model of dynamics.

Here, we consider simulations of a primordial soup
reported in [11] to illustrate the emergence of active
inference of a simple and prebiotic sort. This soup
comprises an ensemble of dynamical subsystems, each
with its own structural and functional states, that are
coupled through short-range interactions. These simula-
tions are similar to (hundreds of) simulations used to
characterize pattern formation in dissipative systems; for
example, Turing instabilities [62] and reaction–diffusion
systems such as the Belousov–Zhabotinsky reaction [63].
The simulations considered here are solutions to stochastic
differential equations for coupled structural and functional
states. In other words, we consider states from classical
mechanics that determine physical motion, and functional
states that could describe electrochemical states. The
agenda here is not to explore the repertoire of patterns and
self-organization these ensembles exhibit, but rather take
an arbitrary example and show that, buried within it, there
is a clear and discernible dynamical structure that satisfies
the criteria for active inference.

A. The Primordial Soup
To simulate a primordial soup we used an ensemble of

elemental subsystems with Newtonian and electrochemical
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dynamics ~x ¼ ð~p; ~qÞ

_~p ¼ fpð~p; ~qÞ þ ~!

_~q ¼ fqð~p; ~qÞ þ ~!: (24)

Here, ~pðtÞ describes position and motion, while ~qðtÞ
corresponds to electrochemical states. One can think of
these generalized states as describing the physical and
electrochemical state of large macromolecules. Crucially,
these states are coupled within and between subsystems
comprising an ensemble. The electrochemical dynamics
were chosen to have a Lorenz attractor, as indicated in
Fig. 4. Changes in electrochemical states are coupled
through the local average of the states of subsystems qðiÞ

within a Euclidean distance of one. This spatial depen-
dency is mediated by an (unweighted) adjacency matrix A
that encodes the dependencies among the functional
(electrochemical) states of the ensemble. The local average
enters the equations of motion both linearly and non-

linearly to provide an opportunity for generalized
synchronization [64].

The Lorenz form for these dynamics was a somewhat
arbitrary choice but provides a ubiquitous model of
electrodynamics, lasers, and chemical reactions [65].
Each subsystems rate parameter #ðiÞ ¼ ð1=32Þð1&
expð&4 % IÞÞ was selected randomly, where U 2 ð0; 1Þ
was selected from a uniform distribution. This introduces
heterogeneity in the rate of electrochemical dynamics, with
a large number of fast subsystems, with a rate constant of
nearly one, and a small number of slower subsystems. To
augment this heterogeneity, we randomly selected a third
of the subsystems and prevented them from (electrochem-
ically) influencing others, by setting the appropriate
column of the adjacency matrix to zero. We refer to these
as functionally closed systems.

The Newtonian motion of each subsystem also depends
upon the functional status of its neighbors. This motion
rests on forces ’ðiÞ exerted by other subsystems that
comprise a strong repulsive force (with an inverse square
law) and a weaker attractive force that depends on their
electrochemical states. This force was chosen so that

Fig. 3. Hierarchical message passing in the oculomotor system. Schematic detailing a neuronal message passing scheme (generalized Bayesian

filtering or predictive coding) that optimizes posterior expectations about hidden states of the world, given sensory (visual) data and the

active (oculomotor) sampling of those data. This schematic shows the cells of origin of forward driving connections (in red) that convey prediction

error from a lower area to a higher area and the backward connections (in black) that construct predictions [58]. These predictions try to explain

away prediction error in lower levels. In this scheme, the sources of forward and backward connections are superficial (red) and deep (black)

pyramidal cells respectively [59]. The equations on the right-hand side represent a generalized descent on free energy under the hierarchical

model described in the main text. In this example, visual input is passed to the lateral geniculate nuclei (LGN) and to higher visual (e.g., V1) and

prefrontal (e.g., frontal eye fields) areas in the form of prediction errors. Crucially, proprioceptive sensations are also predicted, creating

prediction errors at the level of the cranial nerve nuclei (pons). The special aspect of these proprioceptive prediction errors is that they can be

resolved through classical reflex arcs; in other words, they can elicit action to change the direction of gaze and close the visual oculomotor loop.
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systems with coherent (third) states were attracted to each
other but repelled otherwise. The remaining two terms in
the expression for acceleration (see Fig. 4) model viscosity
that depends upon velocity and an exogenous force that
attracts all locations to the origin, as if they were moving in
a simple (quadratic) potential energy well. This ensures
that the synthetic soup falls to the bottom of the well and
enables local interactions. Note that the ensemble is
dissipative at two levels: first, the classical motion includes
dissipative friction or viscosity; and second, the functional
dynamics are dissipative in the sense that they are not
divergence free.

In the examples presented here, 128 subsystems were
integrated using Euler’s (forward) method with step sizes
of 1/512 s and initial conditions sampled from the normal
distribution. Random fluctuations were sampled from the
unit normal distribution. By changing the parameters in
the equations of motion, one can produce a repertoire of
interesting behaviors. For most values of the parameters,
ergodic behavior emerges as the ensemble approaches its
random global attractor (usually after about 1000 s):
generally, subsystems repel each other initially and then
fall back toward the center, finding each other as they
coalesce. Local interactions then mediate a reorganization,
in which subsystems are passed around (sometimes to the
periphery) until neighbors jostle gently with each other. In
terms of the dynamics, transient synchronization can be
seen as waves of dynamical bursting (due to the nonlinear
coupling). In brief, the motion and electrochemical

dynamics look very much like a restless soup (not unlike
solar flares on the surface of the sun)Vbut does it have any
self-organization beyond this?

B. The Markov Blanket
Because the structural and functional dependencies

share the same adjacency matrix, it can be used to identify
the principal Markov blanket by appealing to spectral graph
theory: the Markov blanket of any subset of states encoded
by a binary vector with elements $i 2 f0; 1g is given by
Iverson bracket ½B % $) 2 f0; 1g, where the Markov blanket
matrix B ¼ Aþ AT þ ATA encodes children, parents, and
parents of children. The principal eigenvector of the
(symmetric) Markov blanket matrix will, by the Perron–
Frobenius theorem, contain positive values. These values
reflect the degree to which each state belongs to the cluster
that is most interconnected (cf., spectral clustering). In
what follows, the internal states were defined as belonging
to subsystems with the k ¼ 8 largest values. Having defined
the internal states, the Markov blanket can be recovered
from the Markov blanket matrix using ½B % $) and divided
into sensory and active states, depending upon whether
they are influenced by the hidden states.

Given the internal states and their Markov blanket, we
can now follow their assembly and visualize any structural
or functional characteristics. Fig. 5 shows the adjacency
matrix used to identify the Markov blanket. This adjacency
matrix had nonzero entries if two subsystems were coupled
over the penultimate 256 s of a 2048-s simulation. In other

Fig. 4. Ensemble dynamics. The lower right panel shows the position of (128) subsystems comprising an ensemble after 2048 s, in terms of the

dynamical status (three blue dots per subsystem) of each subsystem centered on its location (larger cyan dots). The left panels show the

evolution of functional (upper panel) and structural (lower panel) states as a function of time. The (electrochemical) dynamics of the internal

(blue) and external (cyan) states are shown for the 512 s. One can see initial (chaotic) transients that resolve fairly quickly, with itinerant behavior

as they approach their attracting set. The lower panel shows the position of internal (blue) and external (cyan) subsystems over the entire

simulation period and illustrates critical events (circled) that occur every few hundred seconds, especially at the beginning of the simulation.

These events generally reflect a pair of particles (subsystems) being expelled from the ensemble to the periphery, when they become sufficiently

close to engage short-range repulsive forces. These simulations integrated the stochastic differential equations using a forward Euler method

with 1/512-s time steps and random fluctuations of unit variance; see [11] for details.
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words, it accommodates the fact that the adjacency matrix
is itself an ergodic process, because it is defined by the
ergodic flow of states. The right-hand-side panel shows the
location of subsystems with internal states (blue) and their
Markov blanket, in terms of sensory (magenta) and active
(red) locations. A clear structure can be seen here, where
the internal subsystems are (unsurprisingly) close together
and enshrouded by the Markov blanket. Interestingly, the
active subsystems support the sensory subsystems that are
exposed to hidden states. This is reminiscent of a biological
cell with a cytoskeleton that supports some sensory
epithelia or receptors within its membrane.

C. Active Inference
If the internal states encode a probability density over the

hidden or external states, then it should be possible to predict
external states from internal states. In other words, if
internal events represent external events, they should exhibit
a significant statistical dependency. To establish this
dependency, we examined the functional (electrochemical)
status of internal subsystems to see if they could predict
structural events (movement) in the external milieu. This is
not unlike the approach taken in brain mapping that searches
for statistical dependencies between, say, motion in the
visual field and neuronal activity [66].

To test for statistical dependencies, the principal
patterns of activity among the internal (functional) states
were summarized using singular value decomposition and
temporal embedding (see Fig. 6). A classical canonical
variate analysis was then used to assess the significance of a
simple linear mapping between expression of these
patterns and the movement of each external subsystem.
The upper left panel of Fig. 6 illustrates these internal

dynamics, while the lower left panel shows the Newtonian
motion of the external subsystem that was best predicted.
The agreement between the actual (dotted line) and
predicted (solid line) motion is self-evident, particularly
around the negative excursion at 300 s. The internal
dynamics that predict this event appear to emerge in their
fluctuations before the event itself (see Fig. 6), as would be
anticipated if internal events were modeling external
events. Interestingly, the subsystem best predicted was the
furthest away from the internal states (magenta circle in
the lower right panel). This probably reflects the fact that
peripheral subsystems have the greatest latitude for
movement and show the largest excursions.

This example illustrates how internal states infer or
register distant events in a way that is not dissimilar to the
perception of auditory events through sound waves. The lo-
wer right panel suggests that motion predictions are the most
significant at the periphery of the ensemble, where the
ensemble has the greatest latitude for movement. These
movements are coupled to the internal states, via the Markov
blanket, through generalized synchrony. Generalized syn-
chrony refers to the synchronization of chaotic dynamics,
usually in skew–product (master–slave) systems [67], [68].
However, in our setup, there is no master–slave relationship
but a circular causality induced by the Markov blanket.
Generalized synchrony was famously observed by Huygens
in his studies of pendulum clocks that synchronized
themselves through the imperceptible motion of beams
from which they were suspended [69]. This nicely illustrates
the ‘‘action at a distance’’ caused by chaotically synchronized
waves of motion. Circular causality begs the question of
whether internal states predict external causes of their
sensory states or actively cause them through action. Exactly

Fig. 5. Emergence of the Markov blanket. The left panel shows the adjacency matrix that indicates a conditional dependency (spatial proximity)

on at least one occasion over the last 256 seconds of the simulation. The adjacency matrix has been reordered to show the partition of hidden

(cyan), sensory (magenta), active (red), and internal (blue) subsystems, whose positions are shown in the right-hand-side panel, using the

same format as in the previous figure. Note the absence of direct connections (edges) between external or hidden and internal subsystem states.

The circled area illustrates coupling between active and hidden states that are not reciprocated. The spatial self-organization in the upper left

panel is self evident; internal states have arranged themselves in a small loop structure with a little cilium, protected by the active states

that support the surface or sensory states. When viewed as a movie, the entire ensemble pulsates in a chaotic but structured fashion, with

the most marked motion in the periphery.
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the same sorts of questions apply to perception [70], [71]: for
example, are visually evoked neuronal responses caused by
external events or by our movements? We will return to this
question in Section VI.

D. Autopoiesis and Oscillator Death
To test for autopoietic maintenance of structural and

functional integrity, the sensory, active, and internal
subsystems were selectively lesioned by rendering them
functionally closed; in other words, by preventing them
from influencing their neighbors. Again, this recapitulates
a common approach in neuroscience; namely, neuropsy-
chology, where the functional consequences of a lesion are
examined. Our lesion was relatively mild, in the sense that
lesioned subsystems retained their dynamics and could
respond to neighboring elements.

Fig. 7 illustrates the effects of these interventions by
following the evolution of the internal states and their

Fig. 6. Self-organized perception. This figure illustrates the Bayesian

perspective on self-organized dynamics. The upper left panel shows

the first (principal) 32 eigenvariates of the internal (functional) states

as a function of time over the last 512 s of the simulations reported

in Figs. 4 and 5. These eigenvariates were obtained by a singular value

decomposition of the time-series over all internal functional states

(lagged between plus and minus 16 s) and were used to predict the

(2-D) motion of each external subsystem. The significance of this

prediction was assessed using the Wilks lambda (following a standard

transformation to the chi-squared statistic). The actual (dotted line)

and predicted (solid line) position for the most significant external

subsystem is shown on the lower left. The fluctuations in internal

states are visible in the upper panel and provide a linear mixture that

correlates with the external fluctuation (highlighted with a white

arrow). The location of the external subsystem that was best predicted

is shown by the magenta circle on the lower right. The lower right panel

also shows the significance with which the motion of the remaining

external states could be predicted (with the intensity of the cyan being

proportional to the chi-squared statistic above). Interestingly, the

motion that is predicted with the greatest significance is restricted to

the periphery of the ensemble, where the external subsystems have

the greatest latitude for movement. To ensure that this inferential

coupling was not a chance phenomenon, we repeated the analysis after

flipping the external states in time. This destroys any statistical

coupling between the internal and external states but preserves the

correlation structure of fluctuations within either subset. The

distribution of the ensuing chi-squared statistics (over 82 external

elements) is shown in the upper right panel for the true (black) and null

(white) analyses. Crucially, five of the subsystems in the true analysis

exceeded the largest statistic in the null analysis. The largest value

of the null distribution provides protection against false positives

at a level of 1/82. The probability of obtaining five chi-squared

values above this threshold by chance is vanishingly small

p ¼ 0:00052.

Fig. 7. Autopoiesis and oscillator death. These results show the

trajectory of the subsystems for 512 s after the last time point

characterized in Fig. 4. The upper left panel shows the trajectories

under the normal state of affairs; showing a preserved and quasi

crystalline arrangement of the internal states (blue) and the Markov

blanket (active states in red and sensory states in magenta). Contrast

this self-organized maintenance of form with the decay and dispersion

that ensues when the internal states and Markov blankets are

synthetically lesioned (remaining three panels). In all simulations, a

subset of states was lesioned by precluding influences on the

functional states of neighboring subsystems. The upper right panel

shows the effect of this relatively subtle lesion on active states that are

rapidly expelled from the interior of the ensemble, allowing sensory

states to invade and disrupt the internal states. A similar phenomenon

is seen when the sensory states were lesioned, as they drift out into the

external system (lower left panel). There is a catastrophic loss of

structural integrity when the internal states themselves cannot affect

each other, with a rapid migration of internal states through and

beyond their Markov blanket (lower right panel).
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Markov blanket over 512 s. The upper left panel shows the
conservation of structural (and implicitly functional)
integrity in terms of spatial configuration over this time
period in the absence of a lesion. Contrast this with the
remaining three panels that show structural disintegration
as the integrity of the Markov blanket is lost and internal
elements are extruded into the environment.

In summary, this section provides proof of principle
that an arbitrary random dynamical system can, when
suitably inspected, show evidence of active inference in
the sense that there are statistical dependencies between
internal and hidden states. Crucially, the emergent dy-
namics are consistent with active inference, in which in-
ternal states couple back to hidden external states to
(apparently) preserve the attracting set. In Section VI, we
consider the other extreme of self-organization and look at
simulations of action and action observation in the brain.

VI. ACTIVE INFERENCE AND COGNITIVE
DYNAMICS

In Section V, we started with equations of motion for
generalized states and then identified the external,
internal states and their Markov blanket based on the
ensuing dynamics. In our final illustration of active
inference, we start with a partition and solve for internal
and active states using a generalized descent on free energy
under the Laplace assumption [see (10) and (18)]

_~ ¼ f ð ~ ;~s; ~aÞ þ ~! 
_~s ¼ fsð ~ ;~s; ~aÞ þ ~!s

_~" ¼D~"& G % @~"Fð~s; ~a; ~"Þ
_~a ¼D~a& G % @~aFð~s; ~a; ~"Þ: (25)

This solution requires us to specify the Lagrangian or
generative model that defines free energy in terms of its
equations of motion. However, we specified these
equations with a twist: the generative model used for
internal states is more complicated than the Lagrangian
used for the remaining states. This has the important
consequence that the internal states enslave external
states, through action, to effectively create the sensorium
expected under the generative model. In other words, we
simulate willful action that is generated by prior beliefs
about hidden causes, which do not actually exist (until they
are emulated by action). In what follows, we simulate
handwriting using the simulations originally reported in
[72]. Having illustrated how inference can cause behavior,
we then turn to perceptual inference, using the same
simulations to model handwriting recognition or action
observation. This illustrates an ambitious application of
generalized filtering to invert a highly nonlinear state–
space model with autonomous (heteroclinic) dynamics.

A. A Generative Model of Writing
Our agent was equipped with a simple generative model

based on Lotka–Volterra dynamics. The particular form of
this model has been discussed previously as the basis of
putative speech decoding [73]. Here, it is used to model a
heteroclinic cycle encoding successive locations to which the
agent expects its two-jointed arm to be attracted. The
resulting trajectory was contrived to simulate handwriting.
This model comprises two sets of hidden states ~ ¼ ð~u; ~qÞ.
The first ð~u1; . . . ; ~u6Þ occupies an abstract state space, in
which a series of (unstable) attracting points are visited in
succession. More formally, the (Lotka–Volterra) equations of
motion for these hidden attractor states ensure that only one
has a high value at any one time, and impose a particular
sequence on the underlying states. These equations of motion
are provided in Fig. 8 (lower left). The second set of hidden
states ð~q1; ~q2Þ describes the (angular) positions and velocities
of arms joints. The attractor and angular states are coupled
through a prior expectation that the arm will be drawn to a
particular location v+ð~uÞ specified by the attractor states. This
is implemented by placing a (fictive) elastic band between the
tip of the arm and the location that exerts a force on the arm
(%ð~q; ~uÞ in Fig. 8). The hidden states draw the arm to a
succession of points to produce a trajectory. We chose the
locations (L in Fig. 8) so that the resulting trajectory looked
like handwriting. Crucially, hidden states generate both
proprioceptive and visual predictions. The proprioceptive
consequences are the angular positions and velocities of the
two joints ~q, while visual information predicts the location of
the arm vð~qÞ; see Fig. 8 and [72]. Crucially, because this
generative model generates two (proprioceptive and extero-
ceptive) sensory modalities, its inversion corresponds to
Bayes-optimal multisensory integration.

However, because action is also trying to reduce
prediction errors, it will move the arm to minimize
proprioceptive prediction errors and reproduce the expected
trajectory. In other words, the arm will trace out a trajectory
prescribed by prior beliefs about its itinerant motion. This
closes the loop, producing autonomous self-generated
sequences of behavior of the sort described below. Note
that the real world does not contain any attracting locations
or elastic bands. The only causes of observed movement are
the self-fulfilling expectations encoded by the itinerant
dynamics of the generative model. In summary, hidden
attractor states entail the intended movement trajectory,
because they generate predictions that action fulfils.
Operationally, this is reflected in the equations of motion
used by action in Fig. 8 (lower right panels): these are
functions of action but not attractor states. Conversely, the
equations of motion in the generative model are functions of
attractor states but not action, where the attractor states
generate forces that play the role of action.

A subtle but important constraint in these simulations
was that action only had access to proprioceptive
prediction error. In other words, action only minimized
the difference between expected and sensed generalized
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motion of the joints, where the mapping between action
(changing the generalized joint position) and propriocep-
tive input is very simple. However, this does not mean
that visual information (prediction errors) cannot affect
action. Visual information is crucial when optimizing
posterior expectations that provide predictions in both
proprioceptive and visual modalities. This means that
visual input can influence action vicariously, through high
level (intentional) representations that predict a (unim-
odal) proprioceptive component. In short, although the
perception or intention of the agent integrates proprio-
ceptive and visual information in a Bayes-optimal fashion,
action is driven just by proprioceptive prediction errors.
This will become important below, where we remove
proprioceptive input but retain visual stimulation to
simulate action observation.

Fig. 9 shows the results of integrating (25) using the
generative model in Fig. 8. The top right panel shows the

expected hidden states embodying Lotka–Volterra dynam-
ics (the hidden joint states are smaller in amplitude).
These generate predictions about the position of the joints
(upper left panel) and consequent prediction errors that
drive action. Action is shown on the lower right and
displays intermittent forces to produce a motor trajectory.
This trajectory is shown on the lower left and is translated
with time to reproduce handwriting. Although this is a
pleasingly simple way of simulating a complicated motor
trajectory, it should be noted that this agent has a very
limited repertoire of behaviors; it can only reproduce this
sequence of graphemes, and will do so ad infinitum.

In summary, we have illustrated the functional
architecture of a generative model whose autonomous
(itinerant) expectations prescribe complicated motor
sequences through active inference. This rests upon
itinerant dynamics that can be regarded as a formal prior
on hidden (and fictive) causes in the world. Action tries to

Fig. 8. Simulated mirror neuron system and motor plant. The right-hand-side panel depicts the functional architecture of supposed neural circuits

underlying active inference. The red ellipses represent prediction error units (neurons or populations), while the white ellipses denote posterior

expectations about hidden states in the world. Here, they are divided into abstract attractor states and physical states of the arm (angular

positions and velocities of the two joints). Red arrows are forward connections conveying prediction errors and black arrows are backward

connections mediating predictions. Motor commands are emitted by the blue units in the ventral horn of the spinal cord. Note that these just

receive prediction errors about proprioceptive states. These prediction errors are the difference between sensed proprioceptive input from

the two joints and descending predictions from posterior expectations in motor cortex. The two-jointed arm has a state space that is characterized

by two angles, which control its position. The equations of motion on the left define the generative model or Lagrangian used for a

generalized descent on free energy for the internal states (posterior expectations). The simpler equations on the right are used to define the

free energy for action, and the flow of hidden states producing sensations; see [72] for details.
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fulfill predictions about proprioceptive inputs, producing
realistic behavior. These trajectories are both caused by
representations of abstract (attractor) states and cause those
states in the sense that they are expectations. Closing the
loop in this way ensures a synchrony between internal
expectations and external outcomes that recapitulates the
circular causality illustrated in Section V. In Section VI-B, we
will make a simple change that means that movements are no
longer caused by the agent. However, we will see that the
internal expectations are relatively unaffected, which means
that they still anticipate observed movements.

B. Action–Observation
We now revisit the above simulations with a small but

important change. Basically, we reproduced the same visual
input but removed the proprioceptive consequences of action

by downweighting proprioceptive precision. From the
agent’s perspective, this is like seeing an arm that looks
like its own arm but does not generate sensations (i.e., the
arm of another agent). However, the agent still expects the
arm to move with a particular itinerant structure and will try
to predict the trajectory with its generative model. In this
instance, the hidden states still represent itinerant dynamics
(intentions) that govern the motor trajectory, but these states
do not produce (precise) proprioceptive prediction errors
and, therefore, do not result in action [see (23)].

It is interesting to regard the ensuing dynamics of
expected attractor states as representing trajectories
through representational spaces; cf., the activity of place
cells [74]. Fig. 10 illustrates the sensory or perceptual
correlates of expected attractor states. The left-hand-side
panels show the activity of one internal state (the fourth)
under action, while the right-hand-side panels show
exactly the same activity under action–observation. The

Fig. 9. Simulating action. This figure shows the results of simulated

action (writing) in terms of posterior expectations about hidden

states of the world (b), consequent predictions about sensory input (a),

and the ensuing behavior (c) that is caused by action (d). The

autonomous dynamics that underlie this behavior rest upon the

expected hidden states that follow Lotka–Volterra dynamics: these are

the six (arbitrarily) colored lines in panel B. The hidden physical states

have smaller amplitudes and map directly on to the predicted

proprioceptive and visual signals (a). The visual locations of the two

joints are shown as blue and green lines, above the predicted joint

positions and angular velocities that fluctuate around zero. The dotted

red lines correspond to prediction error, which shows small

fluctuations about the prediction. Action tries to suppress this error by

matching expected changes in angular velocity through exerting forces

on the joints. These forces are shown in blue and green in panel d.

The subsequent movement of the arm is shown in panel c. This

trajectory has been plotted in a moving frame of reference so that it

looks like synthetic handwriting. The straight lines in panel c denote

the final position of the two jointed arm, and the hand icon shows

the final position of its extremity.

Fig. 10. Simulating action observation. These results illustrate the

perceptual correlates of units representing expected hidden states.

The left-hand-side panels (a) and (c) show the activity of one (the

fourth attractor) hidden state expectation under action, while the

right-hand-side panels (b) and (d) show exactly the same responses

under action–observation. The top rows (a) and (b) show the trajectory

in visual space in terms of horizontal and vertical position (gray

lines). The red dots correspond to the time bins during which the

expectation exceeded two arbitrary units. The key thing to take from

these results is that the simulated neuronal responses are specific to a

limited part of visual space and, crucially, a particular trajectory

through this space. Notice that the same selectivity is shown under

action and observation. The implicit direction selectivity can be seen

more clearly in the lower panels (c) and (d), in which the same data are

displayed but in a moving frame of reference. The key thing to note

here is that this unit responds preferentially when, and only when, the

motor trajectory produces a downstroke, but not an upstroke.
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top rows show the trajectories in visual space, in terms of
horizontal and vertical displacements (gray lines). The red
dots correspond to the time bins in which the posterior
expectation exceeded a threshold of two arbitrary units.
The key thing to take from these results is that the
responses of this internal state are very specific to a limited
part of space and, crucially, a particular trajectory through
this space during both action and its observation.

The obvious analogy here would be mirror neuron
activity [75] and its role in predicting the sensorial
consequences of action [76]. However, there is also an
interesting analogy between directionally selective place
cells of the sort studied in hippocampal recordings, e.g., [74]
and [77]. Notice that the same place and directional
selectivity is seen under action and observation (Fig. 10
right and left columns). The direction selectivity can be seen
more clearly in the lower panels, in which the same data are
displayed but in a moving frame of reference (to simulate
writing). The key thing to note is that this unit responds
preferentially when, and only when, the motor trajectory
produces a downstroke, but not an upstroke. These sorts of
simulations beg the interesting question: would place cell
activity be elicited during visual replay of movement through
an environment? In principle, these questions can now be
addressed using virtual navigation paradigms [78].

In summary, these simulations suggest that exactly the
same neuronal representation can serve as a prescription

for self-generated action, while, in another context, it
encodes a perceptual representation of the intentions of
another [75]. The only thing that changes is the context in
which the inference is made. In these simulations, this
contextual change was modeled by simply reducing the
precision of proprioceptive errors. We have previously
discussed this modulation of proprioceptive precision in
terms of selectively enabling or disabling particular motor
trajectories, which may be a potential target for the
pathophysiology of Parkinson’s disease. The connection
with formal mechanisms of attentional gain [60] is
interesting here, because it means that one could regard
this contextual manipulation as an attentional bias to
exteroceptive signals (caused by others) relative to
interoceptive signals (caused by oneself).

VII. CONCLUSION

In conclusion, starting with some basic considerations
about the ergodic behavior of random dynamical systems,
we have seen how inference could be construed as an
emergent property of any weakly mixing (random dynam-
ical) system, and how it can be described in terms of a
generalized descent on variational free energy. Using the
same formalism, we have been able to address some fairly
abstract issues in action and its observation that even touch
on representation of intentions, agency, and behavior.

Table 2 Processes and Paradigms That Have Been Modeled Using the Scheme in This Paper
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There are many other examples of cognitive dynamics that
we could have considered using this scheme; the
interested reader will find references in Table 2.

The take-home message of this work is that cognitive
dynamics may conform to the same basic principles that
underlie self-organization in any system with coupled
dynamics. The emergence of cognitive-like phenomena
rests upon the notion of a Markov blanket that separates
internal states from external states. The very presence of
this separation implies a generalized synchrony between
external (e.g., environmental) and internal (e.g., neuro-
nal) states that will appear to be lawful, in the sense that
internal states minimize the same free-energy functional
use for Bayesian inference. This lends a quintessentially
inferential or predictive aspect to internal states that has
many of the hallmarks of cognition. Crucially, this
inference or assimilation is active, in the sense that the
internal states affect the causes of sensory input vicari-
ously, through action. The resulting circular causality
between perception and action fits comfortably with many
formulations in embodied cognition and artificial intelli-
gence; for example, the perception–action cycle [25],
active vision [71], the use of predictive information [26]–
[28], and homeokinetic formulations [29]. Furthermore, it
connects these perspectives to more general treatments of
circular causality and autopoiesis in cybernetics and
synergetics [3], [4].

One might argue that the formulation of cognitive
dynamics offered in this paper is too general. In other
words, if every dynamical system engages in some form of

active inference, what is special about the cognitively
adept brain? The answer may lie in the persistence of the
brain’s Markov blanket (i.e., the body) and the hierarchical
depth of its implicit generative model. In nonlinear and
dynamical generative models, there is intimate relation-
ship between temporal scale and hierarchical level, in that
higher levels generate slower dynamics that contextualize
faster dynamics at lower levels. One might, therefore,
imagine that (neuronal) systems that maintain the
integrity of the Markov blanket for long periods of time
may, necessarily, entertain deep inferences about the
causal structure of their sensoriumVinfluences that may
be cognitive in nature. Perhaps the last word on active
inference should go to Helmholtz [79], upon whose ideas
much of this paper is based:

‘‘Each movement we make by which we alter the
appearance of objects should be thought of as an
experiment designed to test whether we have
understood correctly the invariant relations of the
phenomena before us, that is, their existence in
definite spatial relations’’VHerman von Helmholtz
[79, p. 384]. h
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