Cu–Zn–Al shape memory alloys exhibit shape memory behavior within a certain range of composition. They are characterized by a stable high temperature disordered bcc structure named β-phase, followed by a transition to a B2 structure after appropriate cooling and from secondary B2 to DO3 ordering under other cooling procedures. It is also know that martensite stabilization can be reduced by a step-quenched treatment. Shape memory properties are often absolutely interesting and many grades of shape memory alloys are extensively used in the technological world, e. g. in surgery and dentistry. Copper-based shape memory alloys are preferred for their good memory properties and low cost of production. In this work, the main crack initiation and its propagation in an tensile test is analyzed in order to evaluate crack path and its behavior corresponding to low and to high deformation values. Furthermore, results are associated to X-Ray diffraction in order to correlate structural transition involved in an Cu-Zn-Al alloy characterized by a PE behavior.

Crack initiation and growth in an Zn-Cu-Al PE alloy

DI COCCO, Vittorio;IACOVIELLO, Francesco;
2013-01-01

Abstract

Cu–Zn–Al shape memory alloys exhibit shape memory behavior within a certain range of composition. They are characterized by a stable high temperature disordered bcc structure named β-phase, followed by a transition to a B2 structure after appropriate cooling and from secondary B2 to DO3 ordering under other cooling procedures. It is also know that martensite stabilization can be reduced by a step-quenched treatment. Shape memory properties are often absolutely interesting and many grades of shape memory alloys are extensively used in the technological world, e. g. in surgery and dentistry. Copper-based shape memory alloys are preferred for their good memory properties and low cost of production. In this work, the main crack initiation and its propagation in an tensile test is analyzed in order to evaluate crack path and its behavior corresponding to low and to high deformation values. Furthermore, results are associated to X-Ray diffraction in order to correlate structural transition involved in an Cu-Zn-Al alloy characterized by a PE behavior.
2013
978-88-95940-62-5
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/28429
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact