Dealing with large amounts of data or data flows, it can be convenient or necessary to process them in different ‘pieces’; if the data in question refer to different occasions or positions in time or space, a comparative analysis of data stratified in batches can be suitable. The present approach combines clustering and factorial techniques to study the association structure of binary attributes over homogeneous subsets of data; moreover, it seeks to update the result as new statistical units are processed in order to monitor and describe the evolutionary patterns of association.

Dynamic data analysis of evolving association patterns

IODICE D'ENZA, Alfonso;
2013-01-01

Abstract

Dealing with large amounts of data or data flows, it can be convenient or necessary to process them in different ‘pieces’; if the data in question refer to different occasions or positions in time or space, a comparative analysis of data stratified in batches can be suitable. The present approach combines clustering and factorial techniques to study the association structure of binary attributes over homogeneous subsets of data; moreover, it seeks to update the result as new statistical units are processed in order to monitor and describe the evolutionary patterns of association.
2013
978-3-642-28893-7
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/25882
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
social impact