In the event of high-energy penetrator impact, people involved in battlefield scenarios are exposed to the additional hazard stemming from ultrafine metallic particles, i.e. exposure, inhalation, and respiration of aerolized metals. In order to have reliable quantitative measurement of the aerosol particles generated under controlled impact conditions, an experimental set-up was designed to perform impact tests with light gas-gun in chamber. During the impact events, aerosol particle size distributions and total concentrations were measured with a one-second time resolution. In this study preliminary results relative to high purity copper projectile impact at different velocities are presented
Ultrafine particle size distribution during high velocity impact of high density metals
BUONANNO, Giorgio;STABILE, Luca;RUGGIERO, Andrew;IANNITTI, Gianluca;BONORA, Nicola
2012-01-01
Abstract
In the event of high-energy penetrator impact, people involved in battlefield scenarios are exposed to the additional hazard stemming from ultrafine metallic particles, i.e. exposure, inhalation, and respiration of aerolized metals. In order to have reliable quantitative measurement of the aerosol particles generated under controlled impact conditions, an experimental set-up was designed to perform impact tests with light gas-gun in chamber. During the impact events, aerosol particle size distributions and total concentrations were measured with a one-second time resolution. In this study preliminary results relative to high purity copper projectile impact at different velocities are presentedI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.