Water Strider Robot (WSR) is a kind of bioinspired micro robot that can stand and move on water surface via surface tension. In this paper, a design method is presented with algorithms for designing driving leg. Structure, control system and software of the robot are also discussed in details. A prototype Water Dancer II‐a that is driven with two electric motors is presented as successfully tested in lab. The proposed WSR is tele‐controlled with infrared signals and has the capability of turning and speed regulation with features of light tiny volume and low power consumption. Experimental results are reported and discussed to show practical feasibility of the presented WSR prototype. The new results in the paper are related also to the WSR prototype design with a robot body of less than 30 x 30 mm size and with ten leg rods of 90 mm length and 0.2 diameter that are able to provide lifting force for a water walk of the 6.0 grams robot at a forward speed of 20 cm/s or angular velocity of 9 degree/s with two micro DC motors(RoomFlight 4 x 8 mm, 28 Ohm).

Water Dancer II-a: a Non-tethered Telecontrollable Water Strider Robo

CECCARELLI, Marco
2011

Abstract

Water Strider Robot (WSR) is a kind of bioinspired micro robot that can stand and move on water surface via surface tension. In this paper, a design method is presented with algorithms for designing driving leg. Structure, control system and software of the robot are also discussed in details. A prototype Water Dancer II‐a that is driven with two electric motors is presented as successfully tested in lab. The proposed WSR is tele‐controlled with infrared signals and has the capability of turning and speed regulation with features of light tiny volume and low power consumption. Experimental results are reported and discussed to show practical feasibility of the presented WSR prototype. The new results in the paper are related also to the WSR prototype design with a robot body of less than 30 x 30 mm size and with ten leg rods of 90 mm length and 0.2 diameter that are able to provide lifting force for a water walk of the 6.0 grams robot at a forward speed of 20 cm/s or angular velocity of 9 degree/s with two micro DC motors(RoomFlight 4 x 8 mm, 28 Ohm).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11580/18934
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact