Let G be the circulant graph Cn(S) with S ⊆ { 1, . . ., [n/2]} and let A be its independence complex. We describe the well-covered circulant graphs with 2-dimensional A, and construct an infinite family of vertex-decomposable circulant graphs within this family. Moreover, we show that if Cn(S) has a 2-dimensional vertex decomposable A, then it has a level Stanley-Reisner ring.

2-Dimensional vertex decomposable circulant graphs

Romeo F.
2020-01-01

Abstract

Let G be the circulant graph Cn(S) with S ⊆ { 1, . . ., [n/2]} and let A be its independence complex. We describe the well-covered circulant graphs with 2-dimensional A, and construct an infinite family of vertex-decomposable circulant graphs within this family. Moreover, we show that if Cn(S) has a 2-dimensional vertex decomposable A, then it has a level Stanley-Reisner ring.
File in questo prodotto:
File Dimensione Formato  
2DimVertexCirculant.pdf

accesso aperto

Licenza: Copyright dell'editore
Dimensione 384.56 kB
Formato Adobe PDF
384.56 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/106931
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
social impact