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Abstract

Let G be the circulant graph Cn(S) with S ⊆ {1, . . . ,
⌊
n
2

⌋
} and let ∆ be its inde-

pendence complex. We describe the well-covered circulant graphs with 2-dimensional
∆, and construct an infinite family of vertex-decomposable circulant graphs within this
family. Moreover, we show that if Cn(S) has a 2-dimensional vertex decomposable ∆,
then it has a level Stanley-Reisner ring.
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Introduction

Let n ∈ N and S ⊆ {1, 2, . . . ,
⌊
n
2

⌋
}. The circulant graph G := Cn(S) is a graph with

vertex set Zn = {0, . . . , n − 1} and edge set E(G) := {{i, j} | |j − i|n ∈ S} where |k|n =
min{|k|, n− |k|}.

Let R = K[x0, . . . , xn−1] be the polynomial ring on n variables over a field K. The edge
ideal of G, denoted by I(G), is the ideal of R generated by all square-free monomials xixj
such that {i, j} ∈ E(G). Edge ideals of graphs have been introduced by Villarreal [20] in
1990, where he studied the Cohen–Macaulay property of such ideals. Many authors have
focused their attention on such ideals (e.g.[10], [6]). A known fact about Cohen-Macaulay
edge ideals is that they are well-covered, that is all the maximal independent sets of G have
the same cardinality. Despite the nice structure circulant graphs have, it has been proved
that their clique number is hard to compute (see [5]), and hence so is the Krull dimension
of R/I(G).

In particular, some well-covered circulant graphs have been studied in [2], [3],[19], [8]
and [15]. In [19] and [8] the authors studied well-covered circulant graphs that are Cohen-
Macaulay. The most interesting families are power cycle ones and their complements.
Within these families, the Cohen-Macaulay ones have Krull dimension 2. Moreover, the
infinite family of well-covered power cycles of Krull dimension 3 has elements that are all
Buchsbaum ([19]). In addition, in [8, Table 1] the authors studied all the circulant graphs
within 16 vertices, by using symbolic computation. Among these, the Cohen-Macaulay
ones with Krull dimension 3 have R/I(G) that is the tensor product of Cohen-Macaulay
rings of Krull dimension 1 (e.g. C6(3), C9(3), etc.). We observe that the first non-trivial
Cohen-Macaulay circulant graph with Krull dimension 3 is the Paley graph C17(1, 2, 4, 8)
(see Example 1). In particular we verified, through a Macaulay2 computation, that the
independence complex of C17(1, 2, 4, 8) is also vertex decomposable (see [12]). Hence a
natural question arises: “Is it possible to find an infinite family of circulant graphs of Krull
dimension 3 that are Cohen-Macaulay?”
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The idea is to find good properties on n and S to find such a family. In fact we will
prove the following result.

Theorem 1. Let G = Cn(1, 2, 4, . . . , 2m, 2m − 1) with m ≥ 3 and n = 3 ·2m and let ∆ be its
independence complex. Then ∆ is a 2-dimensional vertex decomposable simplicial complex
with respect to the following sequence of vertices

[1, 2, . . . , 2̂m, 2m + 1, . . . , 2̂m+1, . . . , n− 1].

We recall that the vertex decomposability implies the Cohen-Macaulayness.
In Section 2 we give a characterization of pure 2-dimensional independence complexes of

circulants (Proposition 1) and explicit formulas for the f -vector and h-vector (Proposition 2
and Proposition 3). In Section 3, we give the proof of Theorem 1. Moreover, we present an
example, where n = 3 · 23, to clarify the steps of the proof of Theorem 1 (Example 2). Fur-
thermore in Section 4, we prove that any 2-dimensional vertex decomposable independence
complex of circulant graphs has Stanley-Reisner ring that is a level algebra (Theorem 3). It
is known that the Hilbert function of level algebras has nice properties (see [9]). Moreover
when one talks about level algebras, the question about which ones are also Gorenstein
algebras naturally arises (see [4], [9]). In this regard, in Proposition 4 we prove that among
the level algebras of Theorem 3, the only Gorenstein algebra is R/I(G) where G = C6(3).

1 Preliminaries and the Paley example

In this section we recall some concepts and notations on graphs and on simplicial complexes
that we will use in the article.
Set V = {x1, . . . , xn}. A simplicial complex ∆ on the vertex set V is a collection of subsets
of V such that: 1) {xi} ∈ ∆ for all xi ∈ V ; 2) F ∈ ∆ and G ⊆ F imply G ∈ ∆. An element
F ∈ ∆ is called a face of ∆. A maximal face of ∆ with respect to inclusion is called a facet
of ∆.
The dimension of a face F ∈ ∆ is dimF = |F |−1, and the dimension of ∆ is the maximum
of the dimensions of all facets. Moreover, if all the facets of ∆ have the same dimension,
then we say that ∆ is pure. Let d − 1 the dimension of ∆ and let fi be the number of
faces of ∆ of dimension i with the convention that f−1 = 1. Then the f -vector of ∆ is the
(d+ 1)-tuple f(∆) = (f−1, f0, . . . , fd−1). The h-vector of ∆ is h(∆) = (h0, h1, . . . , hd) with

hk =

k∑
i=0

(−1)k−i
(
d− i
k − i

)
fi−1. (1.1)

The sum

χ̃(∆) =

d−1∑
i=−1

(−1)ifi

is called the reduced Euler characteristic of ∆ and hd = (−1)d−1χ̃(∆). For any F ∈ ∆ we
define link∆(F ) = {G ∈ ∆ : F ∩G = ∅ and F ∪G ∈ ∆}, del∆(F ) = {G ∈ ∆ : F ∩G = ∅}.
We define the chain complex as follows:

C : 0→ Kfd−1
∂d−1−→ Kfd−2

∂d−2−→ . . .
∂0−→ K → 0
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and by definition the i−th reduced homology group H̃i(∆;K) is

H̃i(∆;K) = ker(∂i)/im(∂i+1).

We set bi = dim H̃i(∆;K) and we point out that

b0 = c− 1 (1.2)

where c is the number of distinct components of ∆. As in [11, Chapter 7], the reduced
Euler characteristic χ̃(∆) can be seen as

χ̃(∆) =

d−1∑
i=−1

(−1)ibi = (−1)d−1hd. (1.3)

Given any simplicial complex ∆ on V , we can associate a monomial ideal I∆ in the poly-
nomial ring R as follows:

I∆ = ({xj1xj2 · · ·xjr : {xj1 , xj2 , . . . , xjr} /∈ ∆}).

R/I∆ is called the Stanley-Reisner ring (see [17]) and its Krull dimension is d. If G is a
graph we denote the independence complex of G by

∆(G) = {A ⊂ V (G) : A is an independent set of G}.

The clique complex of a graph G is the simplicial complex whose faces are the cliques
of G.
Let T = {1, 2, . . . ,

⌊
n
2

⌋
} and G be a circulant graph on S ⊆ T . We observe that G is a

circulant graph on S = T \ S and the clique complex of G is the independence complex of
G, ∆(G). So from now on we will take ∆ as the clique complex of the graph G = Cn(S).

Let ∆ be a pure independence complex of a graph G. We say that ∆ is vertex de-
composable if one of the following conditions hold: (1) n = 0 and ∆ = {∅}; (2) ∆ has a
unique maximal facet {x0, . . . , xn−1}; (3) There exists x ∈ V (G) such that both link∆(x)
and del∆(x) are vertex decomposable and the facets of del∆(x) are also facets in ∆.
We say that ∆ is Cohen-Macaulay if for any F ∈ ∆ we have that
dimK H̃i(link∆(F ),K) = 0 for any i < dim link∆(F ). In particular, ∆ is Cohen-Macaulay
if and only if R/I∆ is a Cohen-Macaulay ring (see [4]).
We say that ∆ is Buchsbaum if ∀{x} ∈ ∆ we have that link∆(x) is Cohen-Macaulay. In
particular, Buchsbaum simplicial complexes were studied in [18, 14]. It is well known that

∆ Vertex Decomposable⇒

⇒ ∆ Cohen-Macaulay ⇒ ∆ Buchsbaum⇒ ∆ Pure.

Remark 1. Let ∆ be a 0-dimensional simplicial complex on n vertices. Then ∆ is vertex
decomposable.

Lemma 1. Let ∆ be a 1-dimensional simplicial complex on n vertices. Then the following
are equivalent
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(i) ∆ is vertex decomposable;

(ii) ∆ is connected.

Let F be the minimal free resolution of R/I(G). Then

F : 0→ Fp → Fp−1 → . . .→ F0 → R/I(G)→ 0

where Fi =
⊕
j

R(−j)βi,j . The βi,j are called the Betti numbers of F. For any i, βi =
∑
j βi,j

is called the i-th total Betti number. The Castelnuovo-Mumford regularity of R/I(G),
denoted by reg R/I(G) is defined as

reg R/I(G) = max{j − i : βi,j 6= 0}.

Let σ ⊆ V = {x0, . . . , xn−1}. We define the restriction of the simplicial complex ∆ to σ as

∆|σ = {F ∈ ∆ | F ⊆ σ}.

Theorem 2 (Hochster’s formula, [13]). The non-zero Betti numbers of R/I∆ lie in the
squarefree degree j, and we have

βi,j(R/I∆) =
∑

|σ|=j, σ⊆V

dimK H̃j−i−1(∆|σ;K).

If R/I(G) is Cohen-Macaulay, then the last total Betti number βp is the Cohen-Macaulay
type of R/I(G). Moreover, if the Cohen-Macaulay type is βp,p+regR/I(G), then R/I(G) is
called a level algebra. When the Cohen-Macaulay type is equal to 1, we say that R/I(G) is
a Gorenstein algebra.

Lemma 2. Let G be a Cohen-Macaulay graph with independence complex ∆ such that
χ̃(∆) 6= 0 and Cohen Macaulay type s. Then R/I(G) is a level algebra if and only if
s = |χ̃(∆)|.

Proof. We have to compute βp,p+r, where p = pdR/I(G) and r = regR/I(G). Let d be
the Krull dimension of R/I(G). Since R/I(G) is Cohen-Macaulay and from Auslander-
Buchsbaum formula, we have that pdR/I(G) = n− d. Moreover, since χ̃(∆) 6= 0 from [16,
Remark 1.2] and [7, Corollary 4.8], regR/I(G) = depthR/I(G) = d. Hence,

βn−d,n
(∗)
= dim H̃d−1(∆;K)

(∗∗)
= |χ̃(∆)|,

where (∗) follows from Theorem 2 and (∗∗) from the fact that ∆ is Cohen-Macaulay and
from Equation (1.3). Then the assertion follows.

We now give an example of a circulant graph whose independence complex is vertex
decomposable.

Example 1. Let us consider the circulant graph G = C17(1, 2, 4, 8), that is the the Paley
17 (see [1]). In Figure 1 we represent link∆(x) for an x ∈ V (G).

This graph is the first example of Cohen-Macaulay circulant graph whose Stanley-Reisner
ring has Krull dimension 3 and it is not a tensor product of rings having Krull dimension
1. Moreover, it is a level algebra.
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x− 8 x+ 8

x− 2 x+ 2

x+ 1x− 1

x+ 4x− 4

Figure 1: link∆(x) for any x ∈ V (C17(1, 2, 4, 8))

2 2-dimensional well-covered independence complexes

We start by providing a description of well-covered graphs of Krull dimension 3 in terms of
the elements in S.

Proposition 1. Let G = Cn(S) be a non-complete circulant graph. Then ∆ is a pure
simplicial complex of dim ∆ = 2 if and only if for any a ∈ S the following conditions hold

1. There exists |b|n ∈ S such that |b− a|n ∈ S;

2. For any |b|n, |c|n ∈ S with b 6= c and such that |c− a|n, |b− a|n ∈ S then |b− c|n /∈ S.

Proof. ⇒) Let a be such that |a|n ∈ S. Suppose by contraposition that at least one of the
conditions (1) or (2) does not hold. Firstly, let us suppose that there does not exist b ∈ V (G)
such that |b|n, |b−a|n ∈ S, then the edge {0, a} is a facet of dimension 1 of ∆. It contradicts
the assumption. Secondly, if there exist b, c ∈ V (G) such that |b|n, |c|n, |c−a|n, |b−a|n ∈ S
and |b−c|n ∈ S then {0, a, b, c} is a facet of dimension 3 of ∆. It contradicts the assumption.
⇐) We start by proving that ∆ is 2-dimensional. From (1) it follows that {0, a, b} ∈ ∆,
namely dim ∆ ≥ 2. Now we prove dim ∆ ≤ 2. By contraposition let dim ∆ > 2, then there
exists a facet of dimension 3, namely {0, a, b, c} so that

|a|n, |b|n, |c|n, |c− a|n, |b− a|n, |b− c|n ∈ S

that contradicts (2).
Now we prove that ∆ is pure. By contraposition, assume ∆ is 2-dimensional but not pure.
Since G is not complete, S̄ is not empty, namely there are no isolated vertices. Then there
exists a ∈ V (G) such that {0, a} is a facet of ∆, and in particular |a|n ∈ S̄. It contradicts
the assumption (1).

Now we prove some properties on the f -vector and the h-vector of 2-dimensional inde-
pendence complexes of circulants.
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Proposition 2. . Let G = Cn(S) be such that dim ∆ = 2 and

F0 =
{
{0, a, b} ⊂ V : |a|n, |b|n, |b− a|n ∈ S̄

}
,

the set of the 2-dimensional facets of ∆ containing the vertex 0 and let

F0 = T t Te
where

Te =
{
{0, a, b} ⊂ V : |a|n = |b|n = |b− a|n ∈ S̄

}
.

Then |T | = 3t, for some t ∈ N and

|Te| =

{
1 if n = 3k with k ∈ S
0 otherwise.

Proof. For any F = {0, a, b} in T by shifting the elements of F by a and b, we obtain the
sets F (−a) = {−a, 0, b − a}, F (−b) = {−b, a − b, 0} that are distinct and belong to T .
These are the only shifts sending F ∈ F0 in F ′ ∈ F0. Hence

3 | |T |.

By similar argument if F ∈ Te through the shifts we obtain F itself.

Remark 2. We highlight that there is no circulant C2k(S) such that k ∈ S with pure and
2-dimensional ∆. In fact by contraposition let us assume such a G exists. Since ∆ is pure,
there exists at least an a such that {0, a, k} is a 2-face of ∆, with |k − a|n ∈ S. If we set
a = a, b = k and c = a+k we have that |b|n, |c|n = |k−a|n, |c−a|n = |k|n, |b−a|n, |b−c|n ∈ S
that contradicts (2) of Proposition 1.

Proposition 3. Let G = Cn(S) be such that ∆ is a pure simplicial complex of dimension
2. Then h(∆) = (1, n− 3, n(s− 2) + 3, h3) with

h3 =

{
−1 + n(t− s+ 1) + k if n = 3k with k ∈ S
−1 + n(t− s+ 1) otherwise

(2.1)

where s = |S| and t = 1
3 |T |.

Proof. By plugging k = 1, 2 and d = 3 in formula (1.1), we obtain

h1 = f0 − 3; h2 = f1 − 2n+ 3.

Since from Remark 2 if n is even n
2 /∈ S̄, we have f1 = ns. Moreover,

h3 = χ̃(∆) = −1 + f0 − f1 + f2 = −1 + n− ns+ f2.

From [15, Lemma 1] we have f2 = n·|F0|
3 , where |F0| is the number of 2-dimensional facets

of ∆ containing the vertex 0. By notation of Proposition 2, we set

t :=
1

3
|T |.

If n 6= 3k or n = 3k with k /∈ S̄ we have |Te| = 0 and |F0| = 3t. In the case n = 3k and

k ∈ S we have |F0| = 3t+ 1, that yields f2 = n(3t+1)
3 = nt+ k. Hence (2.1) follows.



G. Rinaldo, F. Romeo 307

3 Proof of Theorem 1

The aim of this section is to prove Theorem 1. We first prove that ∆ is pure and 2-
dimensional, computing its f -vector.

Proposition 4. Let G = Cn(1, 2, 4, . . . , 2m, 2m − 1), m ≥ 3 and n = 3 · 2m. Then ∆ is a
pure 2-dimensional simplicial complex with f -vector

(1, n, n(m+ 2), n(m+ 2) + 2m).

Proof. We prove that ∆ is a pure 2-dimensional simplicial complex, by using Proposition
1. For this aim, we describe the 2-faces of ∆ containing the vertex 0. In the notation of
Proposition 2, {0, 2m, 2m+1} ∈ Te and T is formed by the elements F ∈ {{0, a, b} : a, b ∈ S̄}
that are

{0, 2i, 2i+1}i=0,...,m−1, {0, 1, 2m}, {0, 2m − 1, 2m}, (3.1)

and their shifts F (−a) = {−a, 0, b− a}, F (−b) = {−b, a− b, 0}. Therefore for any a ∈ S̄,
{0, a} is not a facet of ∆, condition (1) of Proposition 1.
To verify condition (2), we claim that there are no faces {0, a, b, c} ∈ ∆. To prove this claim
we distinguish two cases:

(C1) a, b, c ∈ S̄;

(C2) a, b ∈ S̄, with a < b and c ∈ {−s : s ∈ S̄}.

By symmetry the other cases follow.
(C1) We need to verify that for all {0, a, b} and {0, a, c} in (3.1) we have |b− c| /∈ S̄. For

any i ∈ {1, 2, . . . ,m− 2} we have |2i+2− 2i|n = 2i+2− 2i /∈ S̄, then {0, 2i, 2i+1, 2i+2} is not
a 3-face of ∆. Furthermore, |2m−2| = 2m−2 /∈ S̄ because m ≥ 3, that is {0, 1, 2m−1, 2m},
{0, 1, 2, 2m} are not 3-faces of ∆. By similar arguments, the remaining cases follow.
(C2) The strategy is the following. We consider the vertices that are adjacent to both 0
and a, and prove that within this set each pairs of candidates satisfying (C2) are not in ∆.

Let a = 1. We observe that the vertices adjacent to 0 and 1 are {2,−1, 2m, 1 − 2m}.
The candidates {b, c} are

{2,−1}, {2,−2m + 1}, {2m,−1}, {2m,−2m + 1}.

It is straightforward to see that the above pairs are not in ∆.
Let a = 2i with 1 ≤ i ≤ m−1. Then the only candidate {b, c} is {2i+1,−2i}. The latter

is not in ∆.
Let a = 2m − 1, then b = 2m and the only candidate for c ∈ {−s : s ∈ S̄} is −1. But

{2m,−1} is not in ∆.
Hence we have ∆ is pure and 2-dimensional.
For what matters the f -vector of ∆, we have that f1 = ns where s = |S̄|, hence s = m+2.

According to Proposition 2 and [15, Lemma 1] we have f2 = n·|F0|
3 . The elements of F0 are

the 2-faces F in (3.1) and the shifted ones plus the one of Te. Hence, they are 3(m+ 2) + 1,

and f2 = 3n(m+2)+n
3 = n(m+ 2) + 2m.
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We present a characterization of vertex decomposability for 2-dimensional simplicial
complexes useful for our aim.

Lemma 3. Let ∆ be a 2-dimensional pure connected simplicial complex on n vertices, let
M = [v1, v2, . . . , vn−3] be a sequence of vertices of ∆, and for i = 1, 2, . . . , n− 3 let

∆i−1 =

{
∆ if i = 1

del∆i−2
(vi−1) otherwise.

Then the following are equivalent:

(i) ∆ is vertex decomposable with respect to M;

(ii) M satisfies the following properties:

1. For any i = 1, 2, . . . , n− 3, link∆i−1(vi) is a connected 1-dimensional simplicial
complex;

2. ∆n−3 is the simplex on 3 vertices.

Proof. (i) ⇒ (ii). By contraposition, we assume that one of the following is true:

(1)’ There exists a k ∈ {1, 2, . . . , n − 3} such that link∆k−1
(vk) is disconnected or 0-

dimensional;

(2)’ ∆n−3 is not the simplex on 3 vertices.

If (1)’ and there exists a k ∈ {1, 2, . . . , n− 3} such that link∆k−1
(vk) is a disconnected and

1-dimensional, then link∆k−1
(vk) is not vertex decomposable according to Lemma 1, hence

∆ is not vertex decomposable. If it is 0-dimensional, then there exists an isolated vertex b
in link∆k−1

(vk), that is {vk, b} ∈ F(∆k−1) and the facets of ∆k−1 are not facets of ∆, that
contradicts the assumption of vertex decomposability. If (2)’, then dim ∆n−3 < 2 and so
the facets of ∆n−3 are not facets in ∆.
(ii) ⇒ (i). We claim the sequence M is a sequence that is a vertex decomposition of ∆.
From Lemma 1 and the property (ii).(1) we obtain that link∆i−1

(vi) for i = 1, 2, . . . , n− 3
are vertex decomposable. Hence to prove that ∆ is vertex decomposable we are left with
proving the following
Claim: For any i = 1, . . . , n− 3 the facets of ∆i are facets of ∆.
Let us assume condition (ii).(2) and that there exist a j ∈ {1, 2, . . . , n − 3} and {a, b} is a
facet of ∆j . Then at least one between a, and b leaves in M. In fact, if both a, b do not
live in M, then {a, b} will be an edge of ∆n−3, that we recall is a simplex on 3 vertices.
That is impossible. So let us assume that there exists a k > i such that a = vk and
{vk, b} ∈ F(∆j). It implies that link∆k−1

(vk) contains b as isolated vertex, that contradicts
the property (ii).(1). Hence the claim follows.

Now we prove the main theorem.
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Proof of Theorem 1. From Proposition 4, ∆ is pure and 2-dimensional. To prove the vertex
decomposability of ∆, it is useful to define the following edge sets

E(Hlv) =
{
{v − 2i, v − 2i+1}i=l,l+1,...,m−1, {v − 2m, v − 2m − 1}

}
,

E(P lv) =
{
{v + 2i, v + 2i+1}i=0,1,...,l−1

}
that are the edges of two paths,

E(Gv) =
{
{v + 2i, v + 2i+1}i=0,1,...,m−1

}
∪
{
{v + 2m, v + 2m − 1}

}
,

E(Lv) =
{
{v − 2i, v − 2i+1}i=0,1,...,m−1

}
∪
{
{v − 2m, v − 2m + 1}

}
,

that are the edges of two cycles with an extra edge and

E(Blv) =
{
{v − 2i, v + 2i}i=l,l+1,...,m

}
that are disjoint edges connecting E(Lv) and E(Gv). We will prove that ∆ is vertex decom-
posable by using Lemma 3, that is we want to find a sequence of vertices v1, v2, . . . , vn−3

satisfying (ii).(1) and (ii).(2). We claim that such a sequence is

[1, 2, . . . , 2̂m, 2m + 1, . . . , 2̂m+1, . . . , n− 1].

Let us consider the vertices v in 1, 2, . . . , 2m − 1.
For v = 1 and ∆0 = ∆, link∆(1) is vertex decomposable. In fact, for any v ∈ V (G),
F(link∆(v)) is, by abuse of notation,

E(Lv) ∪ E(Gv) ∪ E(B0
v) ∪

{
{v − 1, v + 2m − 1}, {v + 1, v − 2m + 1}

}
that is 1-dimensional and connected (see Figure 2).
We describe the first steps v = 2, 3, 4 before giving the general set (3.2) for F(link∆v−1(v))
with v in the interval [2, 2m − 1].
For v = 2, we have that the vertex 1 = v − 1 is not in link∆1

(v), hence F(link∆1
(v)) is

equal to

E(H1
v) ∪ E(B1

v) ∪
{
{v − 2m + 1, v + 1}

}
∪ E(Gv),

that is 1-dimensional and connected (see Figure 3). From now on, we omit the last obser-
vation that will be clear by the descriptions of the links.
For v = 3, we have that 2 = v − 1, 1 = v − 2 /∈ V (∆2), hence the edges {v − 2, v + 4} and
{v − 2, v + 2} are not in ∆2 (see Figure 4), and F(link∆2

(v)) is

E(H2
v) ∪ E(B2

v) ∪
{
{v − 2m + 1, v + 1}

}
∪ E(Gv).

For v = 4, the same facts of the case v = 3 hold. Hence, link∆3
(v) is isomorphic to link∆2

(3).
To get the general set we observe that for 2 ≤ v ≤ 2m − 1, we have two cases: if v − 1 ∈ S̄
we loose the edge {v − 2l, v − 2l+1} of E(Hlv) and the edge {v − 2l, v + 2l} of E(Blv) from
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the edges of link∆v−2(v − 1), as in the cases v = 2, 3; otherwise link∆v−1(v) is isomorphic
to link∆v−2(v − 1), as in the case v = 4. To get the set (3.2), we pose

j(v) = min{l ∈ N : 2l−1 ≤ v − 1 < 2l}

for 2 ≤ v ≤ 2m−1. Moreover we have 1 ≤ v−1 < 2m, so that j(v) ≤ m, and F(link∆v−1
(v))

is equal to

E(Hj(v)
v ) ∪ E(Bj(v)

v ) ∪
{
{v − 2m + 1, v + 1}

}
∪ E(Gv) (3.2)

that is connected because G and H are, and they are joined by {v − 2m + 1, v + 1}. Now,
we consider the vertices v in 2m + 1, 2m + 2, . . . , 2m+1 − 1.
For v = 2m + 1, since 2m has not been removed, 2m = v − 1 ∈ V (link∆v−2

(v)) (see Figure
6), and we have

F(link∆v−2
(v)) =

{
{v − 1, v + 1}

}
∪
{
{v − 1, v + 2m − 1}

}
∪ E(Gv).

We exploit the steps v = 2m + 2, 2m + 3 before giving the general set (3.3) for 2m + 2 ≤ v ≤
2m+1 − 2.
For v = 2m + 2, since 2m has not been removed, 2m = v − 2 ∈ V (link∆v−2

(v)) (see Figure
7) and

F(link∆v−2
(v)) =

{
{v − 2, v + 2}

}
∪ E(Gv).

For v = 2m + 3, v is not adjacent to 2m (since 3 /∈ S̄) and since we removed the vertex w
for 1 ≤ w ≤ 2m − 1,

F(link∆v−2
(v)) = E(Gv)

(see Figure 8). In general, for 2m + 2 ≤ v ≤ 2m+1 − 2, since the only vertex in {1, . . . , 2m}
that we have not removed is 2m, when v = 2m + 2j , then v − 2j ∈ V (link∆v−2

(v)), that is

F(link∆v−2
(v)) =

{{
{v − 2j , v + 2j}

}
∪ E(Gv) if v = 2m + 2j

E(Gv) otherwise.
(3.3)

For v = 2m+1 − 1, since v is adjacent to 2m, we have

F(link∆v−2(v)) =
{
{v − 2m + 1, v + 1}

}
∪ E(Gv)

(see Figure 10). To complete the decomposition, we need to remove the vertices v in
2m+1 + 1, . . . , n− 1.
For v = 2m+1 + 1, since 2m+1 has not been removed, 2m+1 = v − 1 ∈ V (link∆v−3

(v)). On
the other hand, 1 = v + 2m has been removed (Figure 11), hence

F(link∆v−3
(v)) =

{
{v + 2m − 1, v − 1}

}
∪
{
{v − 1, v + 1}

}
∪ E(Pm−1

v ).

For 2m+1 + 2 ≤ v ≤ n− 2 = 2m+1 + 2m − 2, we set

k(v) = min{l ∈ N : 2l ≤ n− v < 2l+1}.
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We observe that the path Pk(v)
v is contained in link∆v−3

(v) (see Figure 12 and Figure 13).
Moreover, if v = 2m+1 + 2j , then v is adjacent to 2m+1, and link∆v−3(v) contains the edge
{v − 2j , v + 2j} (see Figure 12). Hence, for 2m+1 + 2 ≤ v ≤ n− 2 we have

F(link∆v−3
(v)) =

{{
{v − 2j , v + 2j}

}
∪ E(Pk(v)

v ) if v = 2m+1 + 2j

E(Pk(v)
v ) otherwise.

The existence of {v − 2j , v + 2j} is guaranteed by the inequality 2j ≤ 2k(v). In fact,
n− v = 2m+1 + 2m − 2m+1 − 2j = 2m − 2j . Since j ≤ m− 1, then

2m−1 ≤ 2m − 2j ≤ 2m.

So k(v) = m− 1 for v = 2m+1 + 2j .
The last vertex that we remove is v = n− 1. We have not removed yet 2m+1 = v − 2m + 1
and 0 = v+ 1. Therefore its link is formed only by the edge {v− 2m + 1, v+ 1} (see Figure
14). The only vertices that we have not removed are {0, 2m, 2m+1}, that is a simplex on 3
vertices. The assertion follows.

Now we give an example of circulant belonging to the class above.

Example 2. The first circulant of the class is G = C24(1, 2, 4, 7, 8) and let ∆ = ∆(G). We
want to prove that the sequence

M = [1, 2, . . . , 8̂, 9, . . . , 1̂6, 17, . . . , 23]

satisfies the conditions (1) and (2) of Lemma 3.
By using the notation of the proof of Theorem 1, we have

E(H1
v) =

{
{v − 2, v − 4}, {v − 4, v − 8}, {v − 8, v − 7}

}
,

E(Gv) =
{
{v + 1, v + 2}, {v + 2, v + 4}, {v + 4, v + 8}, {v + 8, v + 1}, {v + 8, v + 7},

}
,

E(P2
v ) =

{
{v + 1, v + 2}, {v + 2, v + 4}

}
,

E(P1
v ) =

{
{v + 1, v + 2}

}
,

E(B1
v) =

{
{v − 2, v + 2}, {v − 4, v + 4}, {v − 8, v + 8}

}
.

For v = 1, link∆(v) is represented in Figure 2 and it is 1-dimensional and connected. From
now on, we omit last observation that will be clear by the figures.
Then we define ∆1 = del∆(1) and we study link∆v−1(v) when v = 2. Since v − 1 = 1 and
we have removed the vertex 1, v − 1 does not appear in link∆v−1

(v) (Figure 3). We point
out that the latter is formed by H1

v, B1
v, Gv and the edge {v − 7, v + 1}.

Then we set ∆2 = del∆(2) and we look at link∆v−1
(v) when v = 3. Since we removed

1 = v − 2 and 2 = v − 1, then v − 1, v − 2 /∈ link∆v−1(v) (Figure 4).
For v = 4, the same facts of the case v = 3 hold. Hence link∆v−1(v) is isomorphic to
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v − 7 v + 7

v − 8 v + 8

v − 2 v + 2

v + 1v − 1

v + 4v − 4

Figure 2: link∆(v) for any v ∈ V (G).

v − 7 v + 7

v − 8 v + 8

v − 2 v + 2

v + 1

v + 4v − 4

Figure 3: link∆v−1(v) for v = 2.

link∆v−2
(v − 1) (Figure 4).

For v = 5, since we have removed 1 = v − 4, 3 = v − 2 and 4 = v − 1, then they do not
appear in link∆v−1(v) (Figure 5).
For v = 6 and 7, the same facts of the case v = 5 hold and their links are isomorphic to
the one in Figure 5.
Now we jump from v = 7 to v = 9, without removing the vertex 8. It implies that we have
v − 1 = 8 is in link∆v−2

(v) (Figure 6).
From v = 10 to v = 14, link∆v−2

(v) is formed by Gv (Figure 8), and the edge connecting 8
to Gv, when v = 8 + 2j, namely {8 = v − 2j , v + 2j} (Figure 7 and Figure 9).

For v = 15, 8 = v − 7 appears in link∆v−2
(v) and once again it is connected to Gv (Figure

10).
We jump from v = 15 to v = 17. Since we have not removed 16 = v − 1, then v − 1 is
contained in link∆v−3(v) (analogously to the case v = 9). On the other hand, since we have
removed 1 = v + 8, it does not appear in link∆v−3(v) (Figure 11), that is the path P2

v plus
the edges {v + 1, v − 1} and {v − 1, v + 7}.
From v = 18 to v = 20, link∆v−3

(v) is formed by P2
v (Figure 13), and the edge connecting

16 to P2
v , when v = 16 + 2j, namely {16 = v − 2j , v + 2j} (e.g. Figure 12).

For v = 21, 22, they are not adjacent to 16 and we have removed 1, 2 = v + 4. That is
link∆v−3(v) is only P1

v .
For v = 23, the only vertices not yet removed are 0 = v + 1 and 16 = v − 7 (Figure 14).
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v − 7 v + 7

v − 8 v + 8

v + 2

v + 1

v + 4v − 4

Figure 4: link∆v−1
(v) for v = 3, 4.

v − 7 v + 7

v − 8 v + 8

v + 2

v + 1

v + 4

Figure 5: link∆v−1(v) for v = 5, 6, 7.

Hence we have proved (ii).(1) of Lemma 3. Then we are left with the only triangle {0, 8, 16},
that is a simplex on 3 vertices, so that (ii).(2) of Lemma 3 is satisfied. Hence ∆ is vertex
decomposable.

4 Level and Gorenstein algebras

In this section we prove that any 2-dimensional vertex decomposable independence complex
of circulants has a level Stanley-Reisner ring.

Definition 1. We say that a graph G is l-connected if for every subset S ⊆ V (G) of
cardinality |S| < l, then G restricted to the set of vertices V \S is connected. We simply call
connected graph a 1-connected graph, biconnected graph a 2-connected graph, triconnected
graph a 3-connected graph.

Lemma 4. Let G = Cn(a, b) be a connected circulant graph. Then G is triconnected.

Proof. The graph G is connected if and only if gcd(n, a, b) = 1. We have to prove that
after we remove any two vertices the graph remains connected. We take out the vertex
0. Since any connected circulant is biconnected, the remaining graph is connected. Let
G∗ = G \ {0}. We have two cases:

(T1) One of the elements a, b is coprime with n.
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v + 7

v + 8

v + 2

v + 1v − 1

v + 4

Figure 6: link∆v−2
(v) for v = 9.

v + 7

v + 8

v + 2

v + 1

v + 4

v − 2

Figure 7: link∆v−2(v) for v = 10.

(T2) Neither a nor b is coprime with n.

(T1) We assume a coprime with n, then

V (G) = {a, 2a, . . . , (n− 1)a}.

Let b = sa. By removing the vertex a (respectively the vertex (n−1)a), the remaining graph
is connected through the path {2a, 3a, . . . , (n− 1)a} (respectively {a, 2a, . . . , (n− 2)a}). So
we need to consider the removal of ia with 2 ≤ i ≤ n − 2. We end up with the two paths
on vertices

A = {a, . . . , (i− 1)a}, B = {(i+ 1)a, . . . , (n− 1)a}.
We prove that the two paths above are connected each other by some edges. We have two
cases: i ≤ s, i > s. If i ≤ s, then i+ 1 ≤ s+ 1 ∈ B and {a, a+ b} = {a, (s+ 1)a} ∈ E(G).
If i > s, since 1 < s ≤ i− 1, then (i+ 1− s)a ∈ A. Hence {(i+ 1− s)a, (i+ 1)a} ∈ E(G).
The assertion follows

(T2) We assume d = gcd(b, n) and since gcd(a, b, n) = 1, then a is coprime with d. Let
n = ld. It follows that the vertex set V (G∗) can be partitioned in

V0 = {d, . . . (l − 1)d},
V1 = {a, a+ d, . . . a+ (l − 1)d},

...
Vd−1 = {(d− 1)a, (d− 1)a+ d, . . . (d− 1)a+ (l − 1)d}.
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v + 7

v + 8

v + 2

v + 1

v + 4

Figure 8: link∆v−2
(v) for v = 11, 13, 14.

v + 7

v + 8

v + 2

v + 1

v + 4v − 4

Figure 9: link∆v−2
(v) for v = 12.

We observe that the sets Vi and Vi+1 are connected each other since a ∈ S. Moreover
each Vi is connected, since d | b ∈ S, and if r 6= 0, then Vr is a cycle and it is biconnected.
It implies that after removing a vertex from Vr with r 6= 0, the graph remains connected.
So we assume r = 0, and we remove the vertex kd for some k. Hence we have to prove that
the two sets

V ′0 = {d, . . . , (k − 1)d}, V ′′0 = {(k + 1)d, . . . , (l − 1)d}

are connected each other. Take x ∈ V ′0 and y ∈ V ′′0 . Then a + x, a + y ∈ V1. Since V1 is
connected, the assertion follows.

We present an interesting observation on the reduced Euler characteristic of 2-dimensional
complexes for circulants.

Lemma 5. Let n ≥ 6 and G = Cn(S) be circulant graph dim ∆ = 2. Then

χ̃(∆) 6= 0.

Proof. If n = 6 it is an easy task. We consider the case n > 6. The f -vector of ∆ is given
by (f0, f1, f2) and

χ̃(∆) = −1 + f0 − f1 + f2 = −1 + n− f1 + f2.
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v + 7

v + 8

v + 2

v + 1

v + 4

v − 7

Figure 10: link∆v−2
(v) for v = 15.

v + 7

v + 2

v + 1v − 1

v + 4

Figure 11: link∆v−3
(v) for v = 17.

Let d = gcd(f2, f1, n). By Lemma 2.2 of [15] it follows that

f1 =
nf1,0

2
, f2 =

nf2,0

3

Hence in any case d ∈ {n6 ,
n
3 ,

n
2 , n}. Since n > 6, then d > 1. Therefore it follows that

χ̃(∆) ≡ −1 mod d

and χ̃(∆) 6= 0.

Lemma 6. Let G = Cn(S̄) be a circulant graph such that ∆ is 2-dimensional and vertex
decomposable. Then |S| ≥ 2.

Proof. By contraposition, let us assume that G = Cn(a), for a ∈ Zn. Since dim ∆ = 2, then
n = 3a. It implies that ∆ is disconnected, that implies ∆ is not vertex decomposable.

Proposition 5. Let G = Cn(S̄) be a circulant graph such that ∆ is 2-dimensional and
Cohen-Macaulay. Then

regR/I(G) = 3.
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v + 2

v + 1

v − 2

v + 4

Figure 12: link∆v−3
(v) for v = 18.

v + 2

v + 1

v + 4

Figure 13: link∆v−3
(v) for v = 19.

Proof. Since R/I(G) is Cohen-Macaulay, then by Lemma 5, [16, Remark 1.2] and [7, Corol-
lary 4.8] we get

regR/I(G) = depthR/I(G) = dimR/I(G) = 3.

Theorem 3. Let G = Cn(S̄) be a circulant graph such that ∆ is 2-dimensional and vertex
decomposable. Then R/I(G) is a level algebra.

Proof. From Remark 5, χ̃(∆) is always non-zero. Hence according to Lemma 2, we have to
prove that the Cohen-Macaulay type of R/I(G) coincides with χ̃(∆). Namely, we have to
compute the last total Betti number of the minimal free resolution of R/I(G). Since ∆ is
also Cohen-Macaulay, then

depthR/I(G) = dimR/I(G) = 3.

From Auslander-Buchsbaum formula, we have that

pdR/I(G) = dimR− depthR/I(G) = n− 3.

From Proposition 5 we have regR/I(G) = 3. So we have to look at the Betti numbers
βn−3,j for j ∈ {1, 2, 3}. According to Hochster’s Formula (Theorem 2),

βi,σ = dimK H̃|σ|−i−1(∆|σ;K).

First of all, we assume |σ| = n− 2 and so

βn−3,n−2 = dimK H̃0(∆|σ;K) = 0
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v + 1

v − 7

Figure 14: link∆v−3
(v) for v = 23.

from Lemma 6 and Lemma 4, and from Equation (1.2). Now we assume |σ| = n − 1, and
so

βn−3,n−1 = dimK H̃1(∆|σ;K).

Since ∆|σ is the simplicial complex defined on V (G) = {0, 1, 2, . . . , x̂, . . . , n− 1}, it holds

∆|σ ' del∆(x)

that is vertex decomposable because ∆ is, and hence Cohen-Macaulay. Therefore βn−3,n−1 =
0. Finally, we assume |σ| = n, and hence

βn−3,n = dimK H̃2(∆;K) = χ̃(∆),

and the assertion follows.

Corollary 1. Let G = Cn(1, 2, 4, . . . , 2m, 2m − 1) with m ≥ 3 and n = 3·2m. Then R/I(G)
is a level algebra.

It is of interest to know whether a level algebra is also a Gorenstein algebra. In general,
we have the following

Theorem 4. Let G be a non-empty circulant graph with dimR/I(G) = 3. The following
are equivalent:

1. R/I(G) is Gorenstein;

2. G = C6(3).

Proof. (2)⇒(1). It is easy to verify that ∆(C6(3)) is vertex decomposable. Then, according
to Theorem 3 and Lemma 2, we have to compute χ̃(∆). The f -vector of ∆ is (1, 6, 12, 8),
so χ̃(∆) = −1 + 6− 12 + 8 = 1. Therefore, the assertion follows.
(1)⇒(2). A necessary condition for R/I(G) to be Gorenstein is that its h-vector has to be
symmetric (see [21, Corollary 5.3.10]). From Proposition 3, by requiring that

h1 = h2,
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we obtain
n(s− 3) = −6.

The pairs of integers with n > 2 that satisfy the equation above are

(3, 1), (6, 2).

The first pair is not admissible because ∆(G) will be the simplex on 3 vertices and G the
empty graph. So the h-vector has h1 = h2 if n = 6 and s = 2. So the only candidates for
G are

C6(1), C6(2), C6(3).

In the first case ∆(G) is not pure, hence R/I(G) cannot be Cohen-Macaulay. In the second
case dimR/I(G) = 2. The assertion follows.
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