Let G be the circulant graph Cn(S) with S ⊆ {1, . . . , ⌊n2 ⌋ }. We study the reduced Euler characteristic χ˜ of the independence complexΔ(G) for n = pk with p prime and for n = 2pk with p odd prime, proving that in both cases χ˜ does not vanish. We also give an example of circulant graph whose independence complex has χ˜ which equals 0, giving a negative answer to R. Hoshino.

On the reduced Euler characteristic of independence complexes of circulant graphs

Romeo, Francesco
2018-01-01

Abstract

Let G be the circulant graph Cn(S) with S ⊆ {1, . . . , ⌊n2 ⌋ }. We study the reduced Euler characteristic χ˜ of the independence complexΔ(G) for n = pk with p prime and for n = 2pk with p odd prime, proving that in both cases χ˜ does not vanish. We also give an example of circulant graph whose independence complex has χ˜ which equals 0, giving a negative answer to R. Hoshino.
File in questo prodotto:
File Dimensione Formato  
EulerCirculant.pdf

accesso aperto

Licenza: Copyright dell'editore
Dimensione 309.76 kB
Formato Adobe PDF
309.76 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/106929
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
social impact