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a b s t r a c t

Let G be the circulant graph Cn(S) with S ⊆ {1, . . . ,
⌊ n

2

⌋
}. We study the reduced Euler

characteristic χ̃ of the independence complex∆(G) for n = pk with p prime and for n = 2pk
with p odd prime, proving that in both cases χ̃ does not vanish. We also give an example
of circulant graph whose independence complex has χ̃ which equals 0, giving a negative
answer to R. Hoshino.

© 2018 Elsevier B.V. All rights reserved.

0. Introduction

Let G be a finite simple graph with vertex set V (G) and edge set E(G). A subset C of V (G) is a clique of G if any two different
vertices of C are adjacent in G. A subset A of V (G) is called an independent set of G if no two vertices of A are adjacent in G. The
complement graph of G, Ḡ, is the graph with vertex set V (G) and edge set E(Ḡ) = {{u, v} with u, v ∈ V (G) | {u, v} ̸∈ E(G)}. In
particular, a set is independent in G if and only if it is a clique in the complement graph Ḡ.

We also recall that a circulant graph is defined as follows. Let S ⊆ {1, 2, . . . ,
⌊ n

2

⌋
}. The circulant graph G := Cn(S) is a

simple graph with V (G) = Zn = {0, . . . , n − 1} and E(G) := {{i, j} | |j − i|n ∈ S} where |k|n = min{|k|, n − |k|}.
Recentlymany authors have studied some combinatorial and algebraic properties of circulant graphs (see [7,3,2,12,5,10]).

In particular, in [7,3,2,5], a formula for the f -vector of the independence complex was shown for some nice classes of
circulants, e.g. the dth power cycle, S = {1, 2, . . . , d}, and its complement. Moreover, Hoshino in [7, p. 247] focused on
the Euler characteristic, an invariant that is associated to any simplicial complex (see [4]). In particular, he conjectured, by
our notation, that any independence complex associated to a non-empty circulant graph has reduced Euler characteristic
always different from 0.

We show that for particular n, a circulant graph Cn(S) will support the conjecture, independent of the choice of S. To this
aim, we exploit that each entry of the f -vector is a multiple of a divisor of n (see Lemma 2.1).

In Section 2 we prove that the conjecture holds for n = pk for any prime p, and for n = 2pk for any odd prime p. Moreover
we disprove the conjecture by providing a counterexample (see Example 2.10).

As an application of our results, we focus our attention on two algebraic objects related to the independence complex of
circulant graphs. We first consider the independence polynomial (see [7,2]), that is

I(G, x) =

n∑
i=0

fi−1xi, (0.1)
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where fi−1 are the entries of the f -vector of the independence complex of a graph G. In particular, −1 is a root of the
independence polynomial if and only if the Euler characteristic of the independence complex vanishes. This happens in
Example 2.10 and does not happen for all the cases studied in Theorems 2.3, 2.9.

The second application arises from commutative algebra (see e.g. [4,9,14,11]). Let R = K [x0, . . . , xn−1] be the polynomial
ring and I(G) the edge ideal related to the graph G (see [13]), that is

I(G) = (xixj : {i, j} ∈ E(G)). (0.2)

In this case the non-vanishing of the reduced Euler characteristic gives us information about the regularity index of R/I(G),
namely the smallest integer such that the Hilbert function on R/I(G) becomes a polynomial function, the so-called Hilbert
polynomial (see Section 1, Remark 1.2). Also in this case Theorems 2.3, 2.9 and Example 2.10 are relevant.

1. Preliminaries

In this section we recall some concepts and notations on graphs and on simplicial complexes that we will use in the
article.

Set V = {x1, . . . , xn}. A simplicial complex ∆ on the vertex set V is a collection of subsets of V such that: 1) {xi} ∈ ∆ for
all xi ∈ V ; 2) F ∈ ∆ and G ⊆ F imply G ∈ ∆. An element F ∈ ∆ is called a face of ∆. A maximal face of ∆ with respect to
inclusion is called a facet of ∆.

The dimension of a face F ∈ ∆ is dim F = |F |−1, and the dimension of ∆ is the maximum of the dimensions of all facets.
Let d− 1 be the dimension of ∆ and let fi be the number of faces of ∆ of dimension iwith the convention that f−1 = 1. Then
the f -vector of ∆ is the (d + 1)-tuple f (∆) = (f−1, f0, . . . , fd−1). The h-vector of ∆ is h(∆) = (h0, h1, . . . , hd) with

hk =

k∑
i=0

(−1)k−i
(
d − i
k − i

)
fi−1. (1.1)

The sum

χ̃ (∆) =

d∑
i=0

(−1)i−1fi−1

is called the reduced Euler characteristic of ∆ and hd = (−1)d−1χ̃ (∆).
Given any simplicial complex ∆ on V , we can associate a monomial ideal I∆ in the polynomial ring R as follows:

I∆ = ({xj1xj2 · · · xjr : {xj1 , xj2 , . . . , xjr } ̸∈ ∆}).

R/I∆ is called Stanley–Reisner ring and its Krull dimension is d. If G is a graph, the independence complex of G is

∆(G) = {A ⊂ V (G) : A is an independent set of G}.

The independence polynomial is associated to ∆(G) and by Eq. (0.1) it follows

χ̃ (∆(G)) = −I(G, −1). (1.2)

We also remark that from the definition of Stanley–Reisner ring and by Eq. (0.2), it follows R/I∆(G) = R/I(G).
The clique complex of a graph G is the simplicial complex whose faces are the cliques of G.

Remark 1.1. Let G = Cn(S) be a circulant graph on S ⊆ T := {1, 2, . . . ,
⌊ n

2

⌋
}. We observe that the complement graph of G,

namely Ḡ, is a circulant graph on S̄ := T \ S. Moreover the clique complex of Ḡ is the independence complex of G, ∆(G).

We also recall some basic facts about the regularity index (see [14, Chapter 5]). Let R be a standard graded ring and I be
a homogeneous ideal. The Hilbert function HR/I : N → N is defined by

HR/I (k) := dimK (R/I)k

where (R/I)k is the k-degree component of the gradation of R/I (see [13, Section 2.2]), while the Hilbert–Poincaré series of
R/I is

HPR/I (t) :=

∑
k∈N

HR/I (k)tk.

By the Hilbert–Serre theorem, the Hilbert–Poincaré series of R/I is a rational function, in particular

HPR/I (t) =
h(t)

(1 − t)n

for some h(t) ∈ Z[t]. There exists a unique polynomial PR/I such that HR/I (k) = PR/I (k) for all k ≫ 0. The minimum integer
k0 ∈ N such that HR/I (k) = PR/I (k) for all k ≥ k0 is called regularity index and we denote it by ri(R/I).
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We end this section with the following

Remark 1.2. Let R/I∆ be a Stanley–Reisner ring. Then

ri(R/I∆) =

{
0 if hd = 0
1 if hd ̸= 0.

Related to the regularity index is the a-invariant (see Chapter 5 of [14]), namely the degree of HPR/I (t) as a rational
function, that gives further information about other algebraic invariants.

2. Reduced Euler characteristic of the independence complex of some circulants

The goal of this section is to study the reduced Euler characteristic, χ̃ , of the independence complex ∆(G) of circulant
graphs by proving bounds on the maximum clique number ω(Ḡ). In [10] the author proves that χ̃ (∆(G)) ̸= 0 when n is
a prime number. We generalize the result for n = pk for any prime p, and n = 2pk for any odd prime p. For the sake of
completeness, we give the following lemma that has been stated in [10, Lemma 1].

Lemma 2.1. Let G be a circulant graph on n vertices with maximum independent set of cardinality d. Let fi−1 be the number of
independent sets of cardinality i, and fi−1,0 the number of them containing the vertex 0, then the following property holds

ifi−1 = nfi−1,0 with 0 ≤ i ≤ d.

Proof. Let us call Fi−1 ⊂ ∆ the set of faces of dimension i − 1, that is

Fi−1 = {F1, . . . , Ffi−1}.

Let fi−1,j be number of faces in Fi−1 containing a given vertex j = 0, . . . , n − 1. Since G is circulant fi−1,j = fi−1,0 for all j ∈

{0, . . . , n − 1}. Let A ∈ Ffi−1×n
2 , A = (ajk), be the incidence matrix, whose

ajk =

{
1 if the vertex k − 1 ∈ Fj
0 otherwise.

We observe that each row has exactly i 1-entries. Hence summing the entries of the matrix we have ifi−1. Moreover each
column has exactly fi−1,j non-zero entries. That is ifi−1 = nfi−1,0. □

A useful bound on the maximum clique number for non-complete circulant graphs is given by the following

Lemma 2.2. Let G = Cn(S) be a non-complete circulant graph. Then

ω(G) ≤

⌊n
2

⌋
.

Proof. Suppose that ω(G) > ⌊
n
2⌋. So there exists a clique F of cardinality ⌊

n
2⌋ + 1. Let r ∈ {1, 2, . . . , ⌊ n

2⌋}. The set
{v + r : v ∈ F} contains ⌊

n
2⌋ + 1 vertices so at least one of them belongs to F . Hence there exist v, w ∈ F , such that

w = v + r . Since F is a clique {v, w = v + r} ∈ E(G), that is r ∈ S. The latter works for any r , then we conclude

S =

{
1, 2, . . . ,

⌊n
2

⌋}
,

so G is complete, and this contradicts our assumption. □

Thanks to Lemma 2.2, we prove the following

Theorem 2.3. Let p be a prime and let G be a non-empty circulant graph on n = pk vertices with k > 0. Then χ̃ (∆(G)) ̸= 0.

Proof. Given G circulant graph with maximum independent set of cardinality d, by Lemma 2.1 it follows

ifi−1 = pkfi−1,0 with 0 ≤ i ≤ d.

Since the graph G is not empty, its complement graph Ḡ is not complete. Hence by Lemma 2.2, we have that a maximum
clique in Ḡ has cardinality d <

pk
2 , namely fi−1 is a non-zero multiple of p for 1 ≤ i ≤ d. Therefore

χ̃ (∆(G)) =

d∑
i=1

(−1)i−1fi−1 − 1 = pr − 1

with r ∈ Z. By the primality of p, χ̃ (∆(G)) is always non-zero. □

Before stating the theorem on the case n = 2pk, we prove some properties that will be helpful.
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Lemma 2.4. Let n = 2q for an odd q > 1 and let G = Cn(S) be a non-complete circulant graph. Then ω(G) < q if and only if
{2, 4, . . . , q − 1} ̸⊆ S.

Proof. (⇒). By contraposition assume {2, 4, . . . , q − 1} ⊆ S. We observe that the set {0, 2, 4, . . . , 2q − 2} is a clique of
cardinality q. It negates the hypothesis.

(⇐). Let r ∈ {2, 4, . . . , q − 1} be such that r ̸∈ S. Let C be the set of vertices of a clique of G. We claim |C | < q. We
partition the set of vertices V (G) = {0, 1, 2, . . . , 2q − 1} in the two sets

V1 = {2k | k = 0, . . . , q − 1} and V2 = {2k + 1 | k = 0, . . . , q − 1}.

We observe that |V1| = |V2| = q.

Claim. V1 (respectively V2) contains at most q−1
2 vertices such that for each pair v, w ∈ V1 we have |v − w|n ̸= r.

Proof of the Claim. By contraposition, assume that we take a subset V ′ of cardinality q−1
2 +1 of V1 with the desired property,

say

V ′
= {v1, v2, . . . , v q−1

2 +1}

and since V ′
⊂ V1, these are all even vertices. Now we take the set V ′′

= {v + r : v ∈ V ′
}. Since r is even, V ′′

⊂ V1 and
|V ′

| = |V ′′
| =

q−1
2 + 1. Since |V ′

| + |V ′′
| > q, then V ′

∩ V ′′
̸= ∅, so there exist v, w ∈ V ′ such that w = v + r; hence, the set

V ′ has not the desired property. The claim follows.

Thus |C ∩ V1| ≤
q−1
2 and |C ∩ V2| ≤

q−1
2 , so that |C | < q. □

We give a generalization of Lemma 2.4 in the following

Lemma 2.5. Let n = rq for an odd q > 1. Let G = Cn(S) be a non-complete circulant graph. Then:

(1) If
{
r, 2r, . . . , q−1

2 r
}

̸⊆ S, then ω(G) ≤
n−r
2 .

(2) If ω(G) < q, then
{
r, 2r, . . . , q−1

2 r
}

̸⊆ S.

Proof. (1) The proof follows the steps of (⇐) of Lemma 2.4. We assume jr ̸∈ S for some j, 1 ≤ j ≤
q−1
2 . In this case we

consider the partitions Vi of V (G)

Vi = {rk + i | k = 0, . . . , q − 1}

with i = 0, . . . , r − 1. Let C be the set of vertices of a clique of G. By using similar arguments to the Claim inside the proof
of Lemma 2.4, we can choose at most q−1

2 vertices within each Vi such that for each pair v, w ∈ Vi we have |v − w|n ̸= jr .
Hence for any i ∈ {0, . . . , r − 1}, it follows that |C ∩ Vi| ≤

q−1
2 . Since r( q−1

2 ) =
n−r
2 , at the end we get |C | ≤

n−r
2 .

(2) The same proof of Lemma 2.4 (⇒) holds. □

Remark 2.6. We highlight that by plugging r = 2 in (1) and (2) of Lemma 2.5, we obtain the two implications of Lemma 2.4.
It is the unique case of n = rq such that rq−r

2 , the bound in (1), is equal to q − 1, the bound in (2).

For the sake of simplicity, in Proposition 2.7 and Example 2.8 we focus our attention on the clique complex of the graph.

Proposition 2.7. Let n = 2pk for an odd prime p, with k > 0, and let G = Cn(S) be a circulant graph. If fpk−1, the number of
cliques of cardinality pk, is non-zero then

fpk−1 ≡ 2mod p.

In particular, if one of the following condition holds

(a) 1 ̸∈ S,
(b) 1 ∈ S and there exists t ∈ {1, . . . , pk} with gcd(t, 2p) = 1 such that t ̸∈ S,

then fpk−1 = 2.

Proof. First suppose that the graph is complete. Since fpk−1 =
(2pk
pk

)
and by Lucas’ Theorem [8], we obtain

fpk−1 =

(
2pk

pk

)
≡ 2mod p.
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Now suppose that G is not complete. By Lemmas 2.2 and 2.4, since fpk−1 ̸= 0, that is ω(G) = pk, we have that {2, 4,
. . . , pk − 1} ⊆ S. So fpk−1 ≥ 2. In fact the graph contains at least the two maximal cliques

V1 = {0, 2, 4, 6, . . . , 2pk − 2} and V2 = {1, 3, 5, 7, . . . , 2pk − 1}.

We observe that each clique of cardinality pk different from V1 and V2 has non-empty intersection with V1 and V2.
We first study the particular cases for which fpk−1 = 2. Suppose 1 ̸∈ S. In a clique V of pk vertices different from V1 and

V2, we must have pk intervals between two consecutive vertices in V containing at least 1 vertex not in V , except for one
containing 2 vertices, otherwise V could be identified with V1 or V2. It follows |V (G) \ V | ≥ pk − 1 + 2 = pk + 1, that yields
|V | < pk. It contradicts the assumption.

Now suppose that 1 ∈ S and there exists t odd and coprime with p, 3 ≤ t < pk, such that t ̸∈ S. We prove
fpk−1 = 2. Towards a contradiction, let V be a clique of cardinality pk different from V1 and V2, containing 0 and 1. Let
V ′

= {v + t : v ∈ V }. If V ∩ V ′
̸= ∅ there exist v, w ∈ V such that w = v + t . This is impossible. If V ∩ V ′

= ∅, then
V (G) = V ⊔ V ′. Since (t, p) = 1 and t odd, then (t, n) = 1, hence there exists an odd a ∈ Zn, coprime with n, such that
at ≡ 1mod n. Since 0 ∈ V and t ∈ V ′ by definition of V ′ we have that 2t ∈ V . In fact if t + t = 2t ∈ V ′, then t ∈ V , obtaining
a contradiction. It follows that

2bt ∈ V and (2b + 1)t ∈ V ′ for any b.

The vertex at lives in V ′ since a is odd and lives in V since at = 1 ∈ V . This is a contradiction.
Hence a clique of pk vertices different from V1 and V2 cannot exist and fpk−1 = 2.
We assume fpk−1 > 2. Then by the previous observations we have{

t : t odd and (t, p) = 1
}

∪

{
2k : k = 1, . . . ,

pk − 1
2

}
⊆ S.

Now we distinguish two cases:

(1) S is the (pk − 1)-th power cycle, namely S = {1, . . . , pk − 1};
(2) S is not the (pk − 1)-th power cycle.

(1) In this case fpk−1 is the coefficient of the degree pk term of the independence polynomial of the graph Cn(pk). As pointed
out after Definition 3.4 in [2], this polynomial is

(1 + 2x)p
k
.

Hence fpk−1 = 2pk
≡p2 by Fermat’s Little Theorem.

(2) If S ̸= {1, . . . , pk −1}, there exists an oddmultiple of p,mp for an oddmwithmp < pk, such thatmp ̸∈ S. Letm = qpr
for some odd q with gcd(q, p) = 1 and 0 ≤ r < k − 1. Let V be a clique of cardinality pk different from V1 and V2. Let
V ′

= V + mp := {v + mp : v ∈ V }. We have V ∩ V ′
= ∅. Moreover if v ∈ V then v + mp ∈ V ′ and v + 2mp ∈ V . In fact if

v+2mp ∈ V ′ thenmp ∈ S since V ′ is a clique. The latter implies that V = V +2mp = V +2qpr+1. Since q is odd and coprime
with p, it is coprime with n, hence it is invertible in Zn. Therefore, there exists h ∈ Zn such that qh≡n1, and 2qhpr+1

≡n2pr+1.
Since V = V + 2qpr+1, then V = V + 2pr+1. Now we prove that if j ∈ Zn is such that

V = V + j,

then 2p | j. Towards a contradiction, assume V = V + j and 2p ∤ j. We write j = 2pr+1a + b with 0 < b < 2pr+1 and 2p ∤ b.
Since V = V + j, then V = V + b and we have

L = {0, b, 2b, . . . (o(b) − 1)b} ⊆ V

where o(b) is the order of b in (Zn, +). We analyse g = gcd(b, 2pr+1) to determine the order of b in Zn. Since 2p ∤ b and
b < 2pr+1, g could be either 1, 2, pi with 1 ≤ i ≤ r + 1.

If g = 1, then o(b) = n and L = Zn, but |V | =
n
2 . This is impossible.

If g = 2, then o(b) = pk, L = V1 ⊆ V and |V1| = |V | hence V = V1. It is a contradiction to the assumption V ̸= V1.
If g = pi, then V = V + pi = V + qpr+1−ipi = V ′. It contradicts the fact V ∩ V ′

= ∅.
Hence, if 2p ∤ j, then V ̸= V + j. Let s be the minimum positive integer such that V = V + 2sp. Since V = V + 2pr+1, it

follows that s ≤ pr , 2p ≤ 2sp < 2pk, and

V , V + 1, . . . , V + (2sp − 1)

are 2sp different cliques of G having cardinality pk. Hence 2p divides (fpk−1 − 2) and

fpk−1≡p2.

The assertion follows. □
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Example 2.8. We provide an example with fpk−1 > 2 and S ̸= {1, 2, . . . , pk − 1}. We consider the graph G =

C50({1, 2, . . . , 24} \ {5}), using the notation of the proof of Proposition 2.7, V = V + 2mp = V + 2 · 1 · 5 = V + 10.
The clique complex of G has 32 cliques of cardinality 25. We fix a vertex v, for simplicity 0, and we look at the sequence of
vertices 0, 1, . . . , 9. Moreover, the symbol 0 denotes a vertex not in a clique, while the symbol 1 refers to a vertex in a clique.
We have that V1 has fundamental pattern 1010101010, while V2 has fundamental pattern 0101010101. Since V = V + 10,
each fundamental pattern is repeated 5 times to cover all the vertices of the graph. For example,

V1 = 1010101010.1010101010.1010101010.1010101010.1010101010

and it happens for all the other cliques. The complex has 30 further cliques of three kinds, namely there are three
further different patterns in the sequence of vertices in or not in a clique. The other three fundamental patterns are
1111100000, 1110100010 and 1101100100. Since the graph is circulant, for each of the last three patterns, there are 10
different cliques corresponding to the 10 possible shifts. For example, for the first sequence we will have

0111110000, 0011111000, . . . , 1111000001.

So the total number of cliques will be 3 · 10 + 2 = 32.

Now we are able to prove

Theorem2.9. Let p be an odd prime and let G be a non-empty circulant graph on n = 2pk vertices with k > 0. Then χ̃ (∆(G)) ̸= 0.

Proof. By using similar arguments to Theorem 2.3 we say that

p | fi−1 with 1 ≤ i ≤ pk − 1.

So we write

χ̃ (∆(G)) = pt + fpk−1 − 1 for some t in Z.

Since by Proposition 2.7 fpk−1 is 0 or it is congruent 2 modulo p, we have

χ̃ (∆(G)) = pr ± 1

for some r in Z. That is χ̃ (∆(G)) does not vanish. □

Example 2.10. In the proofs of Theorems 2.3 and 2.9 we are giving a partial positive answer to the Conjecture 5.38 of [7]
stating that all non-empty circulant graphs G have χ̃ (∆(G)) ̸= 0. But with a MAGMA algorithm, available at

http://www.giancarlorinaldo.it/eulercirculants.html,
we have found for n = 30 and n = 36 a list of circulants, up to isomorphisms, that contradict the Conjecture (see Table 1).
Among those, for example, we report the circulant G = C30({1, 3, 8}) whose independence complex has f -vector equals
[1, 30, 345, 1990, 6360, 11736, 12600, 7680, 2430, 300]. That is

χ̃ (∆(G)) = −1 + 30 − 345 + 1990 − 6360 + 11736 − 12600 + 7680 − 2430 + 300 = 0.

We now give some applications. The structure and roots of the independence polynomial have been studied by Hoshino
and Brown (see [1,7,2]). By Theorems 2.3 and 2.9, we obtain the following

Corollary 2.11. Let n ∈ {pk, 2pk} for a prime p and for k > 0, and let G be a non-empty circulant graph on n vertices. Then

I(G, −1) ̸= 0.

By Example 2.10 and Eq. (1.2), −1 is a root of the independence polynomial of the circulant graph C30(1, 3, 8).
Similar results follow by Remark 1.2 for the regularity index and the a-invariant. Moreover by using Corollary 4.8 of [6],

we get the following result

Corollary 2.12. Let G be a circulant graph as in Theorems 2.3 and 2.9. If G is Cohen–Macaulay then

depth R/I(G) = reg R/I(G).

It is of interest to find other sufficient conditions under which the reduced Euler characteristic of a circulant graph does
not vanish.

We focused on the number of vertices of a circulant graph, but other nice combinatorial properties like well-coveredness
(see [7,5]), strongly connectedness (see [10]), vertex decomposability and shellability (see [12]) could be helpful. From
another point of view, it would be nice to find entire classes of circulants that for particular n and S have vanishing Euler
characteristic by using a theoretical approach, rather than the computational one used in Example 2.10.

http://www.giancarlorinaldo.it/eulercirculants.html
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Table 1
The table shows G = Cn(S) such that χ̃ (∆(G)) = 0, up to isomorphisms.

n = 30

{1, 3, 8} {1, 7, 9, 11, 14} {1, 2, 3, 7, 9, 11, 13}
{2, 9, 13} {1, 4, 9, 13, 14} {2, 3, 4, 5, 7, 9, 14}
{8, 9, 13} {2, 3, 7, 8, 9} {2, 3, 4, 5, 8, 9, 14}
{1, 8, 9, 14} {1, 3, 4, 9, 11} {1, 3, 4, 5, 7, 8, 14}
{2, 3, 11, 13} {2, 7, 8, 9, 13} {2, 3, 4, 5, 8, 11, 13}
{3, 8, 11, 13} {2, 3, 4, 7, 13} {1, 2, 3, 7, 8, 9, 11, 13}
{1, 3, 4, 13} {1, 3, 4, 5, 7, 8} {2, 3, 5, 8, 9, 11, 13, 14}
{7, 8, 9, 13} {2, 3, 4, 5, 8, 11} {1, 2, 3, 4, 5, 8, 9, 14}
{1, 4, 7, 9} {1, 2, 3, 8, 9, 11} {1, 2, 3, 5, 7, 9, 11, 14}
{1, 8, 9, 11} {1, 3, 4, 7, 9, 13} {2, 3, 4, 5, 7, 9, 13, 14}
{2, 9, 11, 14} {1, 4, 7, 9, 11, 14} {1, 3, 4, 5, 7, 8, 9, 11, 13}
{1, 2, 9, 13} {1, 2, 3, 5, 11, 14} {1, 2, 3, 4, 5, 8, 9, 11, 13}
{2, 3, 7, 9} {1, 3, 4, 9, 11, 14} {2, 3, 4, 5, 7, 8, 9, 13, 14}
{1, 7, 8, 9, 11} {2, 3, 4, 7, 8, 13} {1, 2, 3, 4, 5, 7, 9, 11, 13, 14}
{1, 3, 7, 8, 13} {1, 2, 5, 7, 9, 13, 14}
{2, 3, 4, 7, 8} {1, 4, 5, 7, 8, 9, 11}

n = 36

{2, 3, 6, 7, 10, 14, 15} {2, 5, 6, 7, 10, 11, 14} {2, 5, 6, 10, 11, 13, 14}
{1, 2, 5, 6, 7, 10, 11, 17} {1, 5, 6, 7, 11, 13, 14, 17} {2, 5, 6, 7, 10, 14, 15, 17}
{1, 2, 5, 6, 7, 10, 11, 13} {1, 5, 6, 7, 10, 11, 13, 14, 17}
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