It is known that the polyomino ideal of simple polyominoes is prime. In this paper, we focus on multiply connected polyominoes, namely polyominoes with holes, and observe that the nonexistence of a certain sequence of inner intervals of the polyomino, called zigzag walk, gives a necessary condition for the primality of the polyomino ideal. Moreover, by computational approach, we prove that for all polyominoes with rank less than or equal to 14, the above condition is also sufficient. Lastly, we present an infinite new class of prime polyomino ideals.

Primality of multiply connected polyominoes

Romeo, Francesco
2020-01-01

Abstract

It is known that the polyomino ideal of simple polyominoes is prime. In this paper, we focus on multiply connected polyominoes, namely polyominoes with holes, and observe that the nonexistence of a certain sequence of inner intervals of the polyomino, called zigzag walk, gives a necessary condition for the primality of the polyomino ideal. Moreover, by computational approach, we prove that for all polyominoes with rank less than or equal to 14, the above condition is also sufficient. Lastly, we present an infinite new class of prime polyomino ideals.
File in questo prodotto:
File Dimensione Formato  
IllinoisPrimalityPolyominoesIJM6403_01_64301.pdf

accesso aperto

Licenza: Copyright dell'editore
Dimensione 209.43 kB
Formato Adobe PDF
209.43 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/106926
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
social impact