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Abstract It is known that the polyomino ideal of simple polyominoes is prime. In this paper,
we focus on multiply connected polyominoes, namely polyominoes with holes, and observe
that the nonexistence of a certain sequence of inner intervals of the polyomino, called zig-
zag walk, gives a necessary condition for the primality of the polyomino ideal. Moreover,
by computational approach, we prove that for all polyominoes with rank less than or equal
to 14, the above condition is also sufficient. Lastly, we present an infinite new class of prime
polyomino ideals.

1. Introduction

Polyominoes are two-dimensional objects obtained by joining edge by edge squares of
the same size. They are studied from the point of view of combinatorics (e.g., in tiling
problems of the plane), as well as from the point of view of commutative algebra (e.g.,
associating binomial ideals to polyominoes). The latter were introduced by Qureshi in
[7]. In particular, she introduces a binomial ideal generated by the inner 2-minors of a
polyomino, called a polyomino ideal. We refer the reader to Section 2 for the notation.

Two pending and questions of interest regarding polyomino ideals are to classify
those that are prime and to prove if they are radical ideals. In this work, we focus on the
first question, giving a partial answer in terms of their geometric realization. Briefly,
a polyomino is called prime if its polyomino ideal is prime. In [3, 4], and [8], the
authors prove that a polyomino is prime if and only if it is balanced, and that the simple
polyominoes are prime. A simple polyomino is a polyomino without holes, whereas
polyominoes having one or more holes are called multiply connected polyominoes,
using the terminology adopted in [1], an introductory book on polyominoes.

In general, giving a complete characterization of the primality of multiply con-
nected polyomino ideals is not so easy. A family of prime polyominoes obtained by
removing a convex polyomino by a given rectangle was shown in [5] and [9].

In Section 3, we give a necessary condition for the primality of the polyomino ideal
with respect to the geometric representation of the polyomino. This condition is related
to a sequence of inner intervals contained in the polyomino, called a zig-zag walk (see
Definition 3.2), whose existence determines the nonprimality of the polyomino ideal.

It is known that a polyomino ideal that is prime is a toric ideal. We present a toric
ideal associated to a polyomino, generalizing Shikama’s construction in [9]. This toric
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ideal contains the polyomino ideal (see Proposition 3.1). Moreover, if the polyomino
contains a zig-zag walk, the binomial associated to the zig-zag walk belongs to the toric
ideal, and the above inclusion is strict.

The condition on zig-zag walks gives us a good filtration of primality. In fact, as an
application, by implementing the algorithm described in [6], we compute all the poly-
ominoes with rank less than or equal to 14 that are 123851 (for a complete description
of the algorithm, see [6]). By the computational approach, using Macaulay2 [2], we
obtain the following theorem.

THEOREM 1.1
Let P be a polyomino with rank.P / � 14. The following conditions are equivalent:

(1) the polyomino ideal IP is prime;
(2) P contains no zig-zag walk.

In the final section of this paper, we observe that removing 5 squares in a particular
position from a given rectangle, we obtain a polyomino with a zig-zag walk (see Fig-
ure 6(B)). Moreover, we define a new infinite family of polyominoes that we call grid
polyominoes, which are obtained by removing rectangular holes by a given rectangle
in a way that avoids the existence of zig-zag walks. We prove that grid polyominoes are
primes.

Therefore, the natural conjecture arises as follows.

CONJECTURE 1.2
Let P be a polyomino. The following conditions are equivalent:

(1) the polyomino ideal IP is prime;
(2) P contains no zig-zag walks.

2. Preliminaries

In this section, we recall definitions and notation first introduced by Qureshi in [7].
Let a D .i; j /; b D .k; `/ 2 N

2, with i � k and j � `; the set Œa; b� D ¹.r; s/ 2 N
2 W

i � r � k and j � s � `º is called an interval of N
2. If i < k and j < `, Œa; b� is

called a proper interval, and the elements a; b; c; d are called corners of Œa; b�, where
c D .i; `/ and d D .k; j /. In particular, a; b are called diagonal corners and c; d anti-
diagonal corners of Œa; b�. The corner a (resp. c) is also called the left lower (resp.
upper) corner of Œa; b�, and d (resp. b) is the right lower (resp. upper) corner of Œa; b�.
A proper interval of the form C D Œa; aC .1; 1/� is called a cell. Its vertices V.C / are
a;aC .1; 0/; aC .0; 1/; aC .1; 1/ and its edges E.C/ are

®
a;aC .1; 0/

¯
;
®
a;aC .0; 1/

¯
;
®
aC .1; 0/; aC .1; 1/

¯
;
®
aC .0; 1/; aC .1; 1/

¯
:

Let P be a finite collection of cells of N2, and let C and D be two cells of P . Then C
and D are said to be connected if there is a sequence of cells C D C1; : : : ;Cm DD of
P such that Ci \ CiC1 is an edge of Ci for i D 1; : : : ;m� 1. In addition, if Ci ¤ Cj
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for all i ¤ j , then C1; : : : ;Cm is called a path (connecting C and D). A collection
of cells P is called a polyomino if any two cells of P are connected. We denote by
V.P /D

S
C2P V.C / the vertex set of P . The number of cells of P is called the rank

of P , and we denote it by rank.P /.
A proper interval Œa; b� is called an inner interval of P if all cells of Œa; b� belong

to P . We say that a polyomino P is simple if for any two cells C and D of N2 not
belonging to P , there exists a path C D C1; : : : ;Cm D D such that Ci … P for any
i D 1; : : : ;m. If the polyomino is not simple, then it is multiply connected (see [1]).

A finite collection H of cells not in P is called a hole of P if any two cells in
H are connected through a path of cells in H , and H is maximal with respect to the
inclusion. Note that a hole H of a polyomino P is itself a simple polyomino.

Following [4], an interval Œa; b�with aD .i; j / and b D .k; `/ is called a horizontal
edge interval of P if j D ` and the sets ¹.r; j /; .r C 1; j /º for r D i; : : : ; k � 1 are
edges of cells of P . If a horizontal edge interval of P is not strictly contained in any
other horizontal edge interval of P , then we call it maximal horizontal edge interval.
Similarly, one defines vertical edge intervals and maximal vertical edge intervals of P .

Let a D .a1; a2/ and b D .b1; b2/ 2 V.P /. We define on the vertices of P the
following total order: a < b if a1 < b1 or a1 D b1 and a2 < b2.

Let P be a polyomino, and let K be a field. We denote by S the polynomial over
K with variables xv , where v 2 V.P /. The binomial xaxb � xcxd 2 S is called an
inner 2-minor of P if Œa; b� is an inner interval of P , where c; d are the anti-diagonal
corners of Œa; b�. We denote by M the set of all inner 2-minors of P . The ideal IP � S
generated by M is called the polyomino ideal of P . We also set KŒP �D S=IP .

3. The toric ring of generic polyominoes and zig-zag walks

Let P be a polyomino. Let S D KŒxvjv 2 V.P /� and IP � S the polyomino ideal
associated to P . Let H be a hole of P . The minimum, with respect to<, of the vertices
of H is called the lower left corner of H .

Let H1; : : : ;Hr be holes of P . For k D 1; : : : ; r , we denote by ek D .ik ; jk/ the
lower left corner of Hk . For k 2 K D ¹1; : : : ; rº, we define the following subset of
V.P /:

Fk D
®
.i; j / 2 V.P / j i � ik and j � jk

¯
:

Let ¹Viºi2I be the set of all the maximal vertical edge intervals of P , and ¹Hj ºj2J
be the set of all the maximal horizontal edge intervals of P . Let ¹viºi2I ; ¹hj ºj2J ,
and ¹wkºw2K be three sets of variables associated to ¹Viºi2I ; ¹Hj ºj2J , and ¹Fkºk2K ,
respectively. We consider the map:

˛ W V.P /�!K
�
¹hi ; vj ;wkº j i 2 I; j 2 J;k 2K

�

a 7�!
Y

a2Hi\Vj

hivj
Y
a2Fk

wk :
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The toric ring TP associated to P is defined as TP D KŒ˛.a/ja 2 V.P /� �

KŒ¹hi ; vj ;wkº j i 2 I; j 2 J;k 2K�. The homomorphism

' W S �! TP

xa 7�! ˛.a/

is surjective, and the toric ideal JP is the kernel of '. The toric ring TP is viewed as a
standard graded K-algebra and, therefore, the corresponding toric ideal JP is standard
graded.

By definition, JP is a prime ideal containing IP . Moreover, the next result shows
that for any polyomino P , .JP /2, the homogeneous part of degree 2 of JP , is equal
to IP , which means that the minimal generators of IP are all and only the minimal
generators of degree 2 of JP .

LEMMA 3.1
Let P be a polyomino. Then IP D .JP /2.

Proof
First of all, we show that IP � .JP /2. Let f 2M, with f D xaxb �xcxd . Since Œa; b�
is an inner interval of P , the corners a and d (resp. b and c) lie on the same horizontal
edge interval Hi (resp. Hj ). In the same way, it holds that a and c (resp. b and d ) lie
on the same vertical edge interval Vl (resp. Vm). Therefore,

(1) '.xaxb/D hihj vlvm
Y

kD1;:::;r

w
pk
k

and

(2) '.xcxd /D hihj vlvm
Y

kD1;:::;r

w
nk
k

for some pk ; nk 2 ¹0; 1; 2º. We have to show that for any k 2 ¹1; : : : ; rº pk D nk . If
P has no holes, then '.xaxb/D '.xcxd /, and f 2 JP . Suppose that H1; : : : ;Hr are
holes of P and consider Hk for k D 1; : : : ; r . Observe that the left lower corner ek of
Hk satisfies one of the following:

(1) ek < a;
(2) a � ek � d ;
(3) d < ek .

Case (1). wk does not divide '.f / (see Figure 1(1)).
Case (2). wk either divides both '.xa/ and '.xc/ (see Figure 1(2)) or it does not

divide '.xaxb/ or '.xcxd /.
Case (3). wk either divides '.xa/ and '.xd / (see Figure 1(3A)) or all

'.xa/; '.xb/; '.xc/ and '.xd / (see Figure 1(3B)), or wk does not
divide '.xaxb/ or '.xcxd /.

Therefore, nk D pk , and it holds for any k D 1; : : : ; r . It follows '.xaxb/D '.xcxd /,
and f 2 ker' D JP . Since all generators of IP belong to JP , the inclusion IP �
.JP /2 is proved.
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Figure 1. Some positions of ek and induced flagging on Œa;b�.

We are going to prove the other inclusion—namely, .JP /2 � IP . Let f 2 JP ,
f D xaxb � xcxd . We start by observing that if a D b or a 2 ¹c; dº, we obtain that
f is null. Hence, we assume without loss of generality that a < b and c < d . Since
'.xaxb/D '.xcxd /, by (1) and (2) the vertices a and d (resp. b and c) lie on the same
horizontal edge interval of P ; a and c (resp. b and d ) lie on the same vertical edge
interval of P ; and all the vertices of these edge intervals belong to P . Therefore, the
vertices a; b; c, and d are the corners of the interval Œa; b�. By contradiction, we assume
that Œa; b� is not an inner interval of P ; namely, there exists a set of cells C that does
not belong to P such that Œa; b� \ C ¤ ;. We observe that the set Œa; b� \ C is a set
of holes of P properly contained in Œa; b� because Œa; d �, Œa; c�, Œb; c�, and Œb; d � are
edge intervals in P . Let H1 be a hole in Œa; b� \ C with lower left corner e D .i; j /.
Let F1 D ¹.m;n/ 2 V.P /jm� i and n� j º, then a is the unique vertex in ¹a; b; c; dº
such that a 2 F1; namely, w1j'.xaxb/ but w1 − '.xcxd /, and f … JP . The assertion
follows. �

Completely describing the elements of JP n IP is not an easy task. However, if the
polyomino contains a particular collection of inner intervals, then we have some partial
information on the elements of JP n IP . The latter also gives a sufficient condition for
the nonprimality of IP —hence, a necessary condition for the primality. In the rest of
the section, we give such a condition.

DEFINITION 3.2
Let P be a polyomino. A sequence of distinct inner intervals W W I1; : : : ; I` of P such
that vi , zi are diagonal (resp. anti-diagonal) corners and ui , viC1 the anti-diagonal
(resp. diagonal) corners of Ii , for i D 1; : : : ; `, is a zig-zag walk of P , if

(Z1) I1 \ I` D ¹v1 D v`C1º and Ii \ IiC1 D ¹viC1º, for i D 1; : : : ; `� 1;
(Z2) vi and viC1 are on a same edge interval of P , for i D 1; : : : ; `;
(Z3) for any i; j 2 ¹1; : : : ; `º, with i ¤ j , does not exist an inner interval J of P

such that zi ; zj 2 J .

REMARK 3.3
Let W W I1 : : : ; I` be a zig-zag walk of P . Then

(1) if vi is a diagonal vertex of Ii , then viC1 is an anti-diagonal vertex of IiC1;
(2) ` is even.
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Proof
(1) Assume that vk , with k 2 ¹1; : : : ; `� 1º, is a diagonal corner of Ik . From condition
(Z2), vkC1 lies on the same edge interval of vk , say E , and is an anti-diagonal corner of
Ik . The line containingE divides N2 in two semi-planes. From condition (Z1), we have
Ik \ IkC1 D ¹vkC1º; hence, Ik and IkC1 do not lie on the same semi-plane. Therefore,
vkC1 is an anti-diagonal corner of IkC1, as well. Observe that the latter justifies the
name “zig-zag.”

(2) Assume that the starting point v1 is a diagonal corner of I1. From (1), it follows
that the vertex vk is a diagonal corner of Ik if and only if k is even (resp. anti-diagonal
corner if and only if k is odd). Since v`C1 D v1, `C 1 is odd. �

REMARK 3.4
Let P be a polyomino and IP � S the polyomino ideal associated to P . If f 2 IP ,
then

f D
X

fIifi D
X

xaixbifi �
X

xcixdifi ;

where fIi D xaixbi � xcixdi 2M; hence, for every m, monomial of f , there are two
variables in m that are (anti-)diagonal corners of an inner interval of P .

The following proposition gives a necessary condition on P to be a nonprime poly-
omino ideal IP .

PROPOSITION 3.5
Let P be a polyomino and IP the polyomino ideal associated to P . If there exists a
zig-zag walk W W I1; : : : ; I` in P , then

xv1 ; : : : ; xv` and fW D
Y

kD1;:::;`

xzk �
Y

jD1;:::;`

xuj

are zero divisors of KŒP � with xvifW 2 IP for i D 1; : : : ; `.

Proof
For any vertex vj in v1; : : : ; v`, after relabeling, we may assume j D 1. Let fIi 2M

be associated to the inner interval Ii .
We define the following polynomial:

Qf D
Y
k>1

xzkfI1 C � � � C .�1/
iC1

Y
j<i

xuj

Y
k>i

xzkfIi C � � � C .�1/
`C1

Y
j<`

xuj fI` :

Let i D 1; : : : ; ` � 1. Suppose that vi is a diagonal corner of Ii ; hence, viC1 is an
anti-diagonal corner of IiC1. It holds that

Y
j<i

xuj

Y
k>i

xzkfIi �
Y
j<iC1

xuj

Y
k>iC1

xzkfIiC1

D
Y
j<i

xuj

Y
k>i

xzk .xvixzi � xviC1xui /
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�
Y
j<iC1

xuj

Y
k>iC1

xzk .xviC2xuiC1 � xviC1xziC1/

D
Y
j<i

xuj

Y
k�i

xzkxvi �
Y
j�iC1

xuj

Y
k>iC1

xviC2 :

Due to the alternation of the signs in Qf and by Remark 3.3, it follows that

Qf D˙
� Y
kD1;:::;`

xzkxv1 �
Y

jD1;:::;`

xuj xv1

�
D˙xv1fW ;

and the sign of Qf depends on whether v1 is a diagonal corner in I1.
Since Qf is sum of polynomials in IP , then Qf 2 IP . Observe that, by hypothesis,

for i ¤ j , zi ; zj do not belong to the same inner interval of P , and the same fact holds
for ui and uj , with i ¤ j . Due to this fact and by Remark 3.4, f … IP . Therefore, xv1
and fW are zero divisors of KŒP �. �

COROLLARY 3.6
Let P be a polyomino and IP the polyomino ideal associated to P . If there exists a
zig-zag walk in P , then IP is not prime.

REMARK 3.7
The ideal JP contains the binomials associated to zig-zag walks. Indeed, let W be a
zig-zag walk and let fW be its associated binomial. From the proof of Proposition 3.5,
it arises that

xv1fW 2 IP � JP

and, due to primality of JP , it follows thatfW 2 JP .

We give an example to better understand the structure of JP .

EXAMPLE 3.8
We consider the polyomino in Figure 2. By using Macaulay2, we computed the ideal
JP associated to P . JP has 50 generators, 46 having degree 2, corresponding to the
inner 2-minors of P ; and 4 having degree 4 that do not belong to IP . The latter are

f1 D x.1;3/x.3;1/x.7;4/x.8;2/ � x.1;2/x.3;4/x.7;1/x.8;3/;

Figure 2. A nonprime polyomino.
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Figure 3. The zig-zag walks related to f1; : : : ;f4.

Figure 4. A nonprime polyomino P such that not all the generators of JP are related to zig-zag walks.

f2 D x.1;3/x.2;1/x.7;4/x.8;2/ � x.1;2/x.2;4/x.7;1/x.8;3/;

f3 D x.1;3/x.3;1/x.6;4/x.8;2/ � x.1;2/x.3;4/x.6;1/x.8;3/;

f4 D x.13/x.2;1/x.6;4/x.8;2/ � x.1;2/x.2;4/x.6;1/x.8;3/:

The four binomials above correspond to the four zig-zag walks drawn in Figure 3.
In this case, the generators of JP in JP n IP are all related to zig-zag walks.

However, we computed JP for the polyomino in Figure 4, and we found that there are
generators of degree 6 that are not related to zig-zag walks; for example,

gD x.1;4/x.3;1/x.4;6/x.5;1/x.6;6/x.8;3/ � x.1;3/x.3;6/x.4;1/x.5;6/x.6;1/x.8;4/:

In Figure 5(A), we highlight the intervals related to g. Moreover, there are two zig-zag
walks that arises from g, as in Figure 5(B).

It is not an easy task to verify that the nonexistence of a zig-zag walk is a sufficient
condition for the primality of IP for any multiply connected polyomino P of rank �
14. In fact, the set of polyominoes grows exponentially with respect to the rank as the
following table, obtained by the implementation in [6], shows.

Rank 7 8 9 10 11 12 13 14
Multiply connected polyominoes 1 6 37 195 979 4663 21474 96496
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Figure 5

THEOREM 3.9
Let P be a polyomino with rank.P / � 14. The following conditions are equivalent:

(1) the polyomino ideal IP is prime;
(2) P contains no zig-zag walks.

Proof
.1/) .2/ It is an immediate consequence of Corollary 3.6.

.2/) .1/ To prove the claim we have implemented a computer program that per-
forms the following three steps:

(S1) Compute the set of all multiply connected polyominoes with rank � 14;
namely, P .

(S2) Compute the set of polyominoes NP� P whose associated ideals are not
primes. We used a routine developed in Macaulay2 (see [2]).

(S3) Verify that all polyominoes in NP have at least one zig-zag walk.

We refer readers to [6] for a complete description of the algorithm that we used. �

4. Grid polyominoes

From a view point of finding a new class of prime polyomino ideals, due to Corol-
lary 3.6, it is reasonable to consider multiply connected polyominoes with no zig-zag
walks. In this section, we consider polyominoes obtained from subtracting some inner
intervals by a given interval of N2, similar to what was done in [5] and [9]. But, if the
cells are removed without a specific pattern, one can easily obtain a zig-zag walk in this
case, too (see Figure 6(B)). Hence, we define an infinite family of polyominoes with no
zig-zag walks by their intrinsic shape: the grid polyominoes.

DEFINITION 4.1
Let P � I WD Œ.1; 1/; .m;n/� be a polyomino such that

P D I n
®
Hij W i 2 Œr�; j 2 Œs�

¯
;

where Hij D Œaij ; bij �, with aij D ..aij /1; .aij /2/, bij D ..bij /1; .bij /2/, 1 < .aij /1 <
.bij /1 <m, 1 < .aij /2 < .bij /2 < n, and
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Figure 6. A grid polyomino and a non-grid polyomino.

(1) for any i 2 Œr� and `; k 2 Œs� we have .ai`/1 D .aik/1 and .bi`/1 D .bik/1;
(2) for any j 2 Œs� and `; k 2 Œr� we have .a j̀ /2 D .akj /2 and .b j̀ /2 D .bkj /2;
(3) for any i 2 Œr � 1� and j 2 Œs � 1�, we have .aiC1j /1 D .bij /1C 1 and

.aijC1/2 D .bij /2C 1.

We call P a grid polyomino.

Let P be a grid polyomino and let TP and JP be the toric ring and the toric ideal
associated to P , respectively, as defined in Section 3, where the hole Hij induces the
subset Fi;j and the variable !i;j . We claim that the grid polyominoes are primes. In
order to prove this, we are going to show that IP D JP .

Let f D f C � f � 2 JP . We define that VC D ¹v 2 V.P / j xv divides f Cº, and,
similarly, that V� D ¹v 2 V.P / j xv divides f �º. A binomial f in a binomial ideal
J is said to be redundant if it can be expressed as a linear combination of binomials
in J of lower degree. A binomial is said to be irredundant if it is not redundant. The
following lemma, which was stated in [9] but only for a family of polyominoes, holds
also for any JP , as defined in Section 3. Even if the proof is essentially the same as in
[9, Lemma 2.2], we report it for the sake of completeness.

LEMMA 4.2
Let f D f C � f � 2 JP be a binomial of degree � 3. If there exist three vertices
p;q 2 VC and r 2 V� such that p;q are diagonal (resp. anti-diagonal) corners of an
inner interval of P and r is one of the anti-diagonal (resp. diagonal) corners of the
inner interval, then f is redundant in JP .

Proof
Let s be the other corner of the inner interval determined by p;q and r . Then

f D f C � f �

D xpxq
f C

xpxq
� f �
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Figure 7. An example of Li;j .

D .xpxq � xrxs/
f C

xpxq
C xrxs

f C

xpxq
� f �

D .xpxq � xrxs/
f C

xpxq
C xr

�
xs
f C

xpxq
�
f �

xr

�
:

By Lemma 3.1, it holds that IP � JP . Since xpxq � xrxs 2 IP � JP , and JP is a

prime ideal, then xs
fC

xpxq
� f �

xr
2 JP , and the statement is proved. �

Let P be a grid polyomino, and let Hij , for i 2 Œr� and j 2 Œs�, be its holes, enumerated
as in Definition 4.1. Fix i 2 Œr� and j 2 Œs�. We denote by Li;j the set

Li;j DFi;j n
[
k�i
h�j

.h;k/¤.i;j /

Fh;k :

Figure 7 displays an example of a set Li;j . In particular, for the grid polyomino P

in the figure, L2;2 consists of all vertices of P in the dark grey region.

LEMMA 4.3
Let P be a grid polyomino. Let f D f C�f � 2 JP . If v 2 VC\Li;j , for some i 2 Œr�
and j 2 Œs�, then there exists v0 2 V� \Li;j .

Proof
We prove the assertion showing that for all .i; j / and any v 2Li;j with v 2 VC, there
exists v0 2 V� such that v0 2Li;j . Let

.i1; j1/Dmin
®
.k; h/ j VC \Fk;h ¤;

¯
:

If such a pair does not exist, there is nothing to prove. Otherwise, let v1 2 VC \Li1;j1 .
Since !i1;j1 j '.f

C/, then !i1;j1 j '.f
�/. It follows that there exists v01 2 V� \Fi1;j1 .
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By the minimality of the pair .i1; j1/ and since '.f C/D '.f �/, v01 2Li1;j1 . Let

.i2; j2/Dmin
®
.k; h/ j

�
VC n ¹v1º

�
\Fk;h ¤;

¯
:

If such a pair does not exist, we are done. Otherwise, let v2 2 .VC n ¹v1º/\Li2;j2 . We
observe that because of the existence of v1 and v01, we have the following equation:

f D
�Y
k�i1
h�j1

!k;h

�
g;

where we have collected all !k;h’s induced by v1 and v01. Because of the existence of
v2, we have that

!i2;j2 j '.g
C/D '.g�/:

It follows that there exists v02 2 .V� n ¹v
0
1º/ \ Fi2;j2 . By the minimality of the pair

.i2; j2/, v02 2Li2;j2 . Iterating this procedure, the assertion follows. �

THEOREM 4.4
Let P be a grid polyomino. Then IP D JP .

Proof
By Lemma 3.1, IP � JP . We have to prove the opposite inclusion; that is, JP �
IP . Since .JP /2 D IP , it suffices to prove that any irredundant binomial of JP is of
degree 2. Let f D f C � f � 2 JP , with deg.f / � 3. Assume by contradiction that
f is irredundant. First, we show that there is no v 2 .VC [ V�/ \ F , where F DS
i2Œr�;j2Œs�Fi;j . Assume by contradiction that there exists v1 2 .VC [ V�/ \ F . In

particular, v1 2Li1;j1 , for some i1 2 Œr�; j1 2 Œs�. Without loss of generality, we may
assume v1 2 VC. By Lemma 4.3, there exists v01 2 V� \Li1;j1 . Note that, by condition
(3) in Definition 4.1, v1 belongs to V.P /\ V.Hij /, for some i; j . The same holds for
v01. Assume v1 < v01. We have the following three cases:

(1) v1 and v01 belong to the same maximal vertical (resp. horizontal) edge
interval;

(2A) at least one of the corners v1 and v01 is not a corner of a hole of P (e.g., see
Figure 8(A));

(2B) v1 and v01 are both diagonal (or anti-diagonal) corners of some holes of P

(e.g., see Figure 8(B)).

(1) If v1 and v01 belong to the same maximal vertical edge interval, there exists
v02 2 V� that lies on the same maximal horizontal edge interval of v1. The vertices
v1; v

0
1, and v02 are corners of an inner interval of P , and by Lemma 4.2, f is redundant,

which is a contradiction. Similarly, we see that v1 and v01 do not belong to the same
maximal horizontal edge interval.

(2A) We assume that at least one of the corners v1 and v01 is not a corner of a hole of
P ; we say v1. Denote by v02 and v03 the vertices in V� that belong to the same horizontal
and vertical edge interval of v1, respectively. The vertices v1; v02; v

0
3 are corners of an
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Figure 8. Some possible positions of v1 and v01.

inner interval of P ; hence, by applying Lemma 4.2 to v1; v02; v
0
3, we obtain that f is

redundant, which is a contradiction.
(2B) We denote by v02 the vertex in V� that belongs to the same vertical edge

interval of v1. The vertices v01 and v02 are diagonal (or anti-diagonal) corners of an
inner interval of P . Denote by g;h the other two corners, where g is the one on the
same horizontal edge interval of v01. Then the binomial xv0

1
xv0
2
� xgxh 2 JP , and

f D f C � f �

D f C � xv0
1
xv0
2

f �

xv0
1
xv0
2

D f C � xhxg

� f �

xv0
1
xv0
2

�
� .xv0

1
xv0
2
� xgxh/

f �

xv0
1
xv0
2

D f 0 � .xv0
1
xv0
2
� xgxh/

f �

xv0
1
xv0
2

:

Let v03 be the vertex in V� that belongs to the same horizontal edge interval of v1.
The vertices v1; v03, and g are corners of an inner interval of P . Since f 0 2 JP , by
applying Lemma 4.2 to v1; v03 and g, we obtain that f 0 is redundant, and then f is also
redundant, which is a contradiction.

It follows that the vertices appearing in VC [ V� do not belong to F . This means
f 2 JP \KŒxv j v 2 V.P / nF �. Let P 0 be the subpolyomino of P which consists of
all cells of P having no vertices belonging to F . P 0 is a simple polyomino and IP 0 D
IP \KŒxv j v 2 V.P / nF �. Note that ˛.v/, for every v 2 V.P / nF , is a monomial of
degree 2 determined by the maximal horizontal and vertical edge intervals to which v
belongs. Then, by [8, Theorem 2.2], IP 0 D JP 0 D JP \KŒxv j v 2 V.P / nF �. Hence,
if f is irredundant in JP , then it is also irredundant in JP \KŒxv j v 2 V.P / n F �.
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But IP 0 is generated by binomials of degree 2; therefore, f is redundant in IP 0 , and
then in JP \KŒxv j v 2 V.P / nF �, which is a contradiction. �

COROLLARY 4.5
Let P be a grid polyomino. Then IP is prime.

From the main results of this work, which are Corollary 3.6, Theorem 3.9, and Corol-
lary 4.5, the following arises naturally:

CONJECTURE 4.6
Let P be a polyomino. The following conditions are equivalent:

(1) the polyomino ideal IP is prime;
(2) P contains no zig-zag walks.
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