We describe the simplicial complex   such that the initial ideal of the binomial edge ideal JG of G is the Stanley-Reisner ideal of  . By using   we show that if JG is (S2), then G is accessible.We also characterize all accessible blocks with whiskers of cycle rank 3 and we define a new infinite class of accessible blocks with whiskers for any cycle rank. Finally, by using a computational approach, we show that the graphs with at most 12 vertices whose binomial edge ideal is Cohen–Macaulay are all and only the accessible ones.

$$(S_2)$$-condition and Cohen–Macaulay binomial edge ideals

Romeo, Francesco
2022-01-01

Abstract

We describe the simplicial complex   such that the initial ideal of the binomial edge ideal JG of G is the Stanley-Reisner ideal of  . By using   we show that if JG is (S2), then G is accessible.We also characterize all accessible blocks with whiskers of cycle rank 3 and we define a new infinite class of accessible blocks with whiskers for any cycle rank. Finally, by using a computational approach, we show that the graphs with at most 12 vertices whose binomial edge ideal is Cohen–Macaulay are all and only the accessible ones.
File in questo prodotto:
File Dimensione Formato  
S2condition.pdf

accesso aperto

Licenza: Copyright dell'editore
Dimensione 559.55 kB
Formato Adobe PDF
559.55 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/106923
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
social impact