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Abstract
We describe the simplicial complex � such that the initial ideal of the binomial edge
ideal JG of G is the Stanley-Reisner ideal of�. By using�we show that if JG is (S2),
then G is accessible. We also characterize all accessible blocks with whiskers of cycle
rank 3 and we define a new infinite class of accessible blocks with whiskers for any
cycle rank. Finally, by using a computational approach, we show that the graphs with
at most 12 vertices whose binomial edge ideal is Cohen–Macaulay are all and only
the accessible ones.

Keywords Binomial edge ideals · Cohen–Macaulay rings · Serre’s condition (S2) ·
Accessible chain of cycles
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1 Introduction

Binomial edge ideals have been introduced in [9] and, independently, in [15]. They
are associated to finite simple graphs, in fact they arise from the 2-minors of a 2 × n
matrix related to the edges of a graph with n vertices. The problem of finding a
characterization ofCohen–Macaulay binomial edge ideals has been studied intensively
bymany authors. There are several attempts at this problem available for some families
of graphs. Some papers in this direction are [1–3, 6, 7, 10, 11, 14, 16–18]. In the last
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one, the authors introduce two combinatorial properties strictly related to the Cohen–
Macaulayness of binomial edge ideals: accessibility and strongly unmixedness. In
particular, they prove

JG strongly unmixed �⇒ JG Cohen–Macaulay �⇒ G accessible.

In the same article, they show that the three conditions are equivalent for chordal and
traceable graphs.

On the other hand, a fundamental condition to describe Cohen–Macaulay modules
is the so-called Serre’s condition (Sr ). N. Terai, in [19], translates this condition into
nice combinatorial terms for the class of squarefree monomial ideals. In general, for
any ideal I ⊆ S, one has

S/I Cohen–Macaulay �⇒ S/I satisfies Serre’s condition (S2).

The main aim of this work is to combine all the above-mentioned algebraic and
combinatorial notions, showing that

S/JG satisfies Serre’s condition (S2) �⇒ G accessible,

and finding a large family of graphs that satisfies all of them. To reach the goal, in
Sect. 3, we describe the simplicial complex �< such that in<(JG) = I�< , for any
term order <. It is well known that in<(JG) is a squarefree monomial ideal. In [4], the
authors prove that a binomial edge ideal JG satisfies the Serre’s condition (S2) if and
only if in<(JG) satisfies it, as well. We exploit this fact and the knowledge of �< to
prove that if JG satisfies (S2)-condition, then G is accessible, improving the results of
[2].

In Sect. 4, we focus on accessible graphs. In particular, in Proposition 3, we show
that any accessible graph induces, in a natural way, blockswithwhiskers that are acces-
sible, too. This fact gives us a sufficient condition for having non-Cohen–Macaulay
binomial edge ideals. In literature, many of the examples of non-Cohen–Macaulay
JG are blocks with whiskers (see [2, 3, 17, 18]). This fact and Proposition 3 motivate
us to study accessible blocks with whiskers. In particular, we identify all the blocks
with whiskers having cycle rank 3 (see Fig. 2) and among them we characterize the
accessible ones (see Figs. 3 and 4). This represents a further step in the study of graphs
with a given cycle rank, following the 3rd author’s works done in [17, 18], where he
classifies the complete intersection ideals by means of cycle rank (0 in that case), and
all the Cohen–Macaulay binomial edge ideals associated with graphs having cycle
rank 1 and 2. Moreover, we observe that the number of blocks with whiskers of a
given cycle rank is finite (Lemmas 3 and 4). We define a rich family of blocks with
whiskers of a given cycle rank that we call chain of cycles (see Definition 3), and we
provide necessary conditions for being accessible. Finally, under certain hypotheses
on the structure of these graphs (see Setup 1), we find an infinite subfamily of chain
of cycles G for which all the above-mentioned algebraic and combinatorial properties
for G and JG are equivalent (see Theorem 3).
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In the last section, we give a computational classification of all the indecompos-
able Cohen–Macaulay binomial edge ideals of graphs with at most 12 vertices (see
Theorem 4). This result has been obtained by using a C++ implementation of the
algorithms related to the combinatorial properties of accessibility, (S2)-condition and
strongly unmixedness. The implementation is freely downloadable from the website
[12]. This computation and Theorem 2 lead us to the following.

Conjecture 1 et G be a graph. Then, G is accessible if and only if S/JG satisfies Serre’s
condition (S2).

In [2], the authors conjecture that accessible graphs are the only with Cohen–
Macaulay binomial edge ideal. Our computation supports this conjecture. Finally,
among the blocks that, after adding suitable whisker, satisfy Theorem 4 we find two
polyhedral graphs; hence, Question 1 naturally arises.

2 Preliminaries

In this section, we recall some concepts and notation on graphs, simplicial complexes
and binomial edge ideals that we will use in the article (see also [3, 9, 16, 19]).

Throughout this work, all graphs will be finite and simple, namely undirected
graphs with no loops nor multiple edges. Given a graph G, we denote by V (G)

and E(G) its vertex and edge set, respectively. Let G be a graph with vertex set
[n] = {1, . . . , n}. If e = {u, v} ∈ E(G), with u, v ∈ V (G), we say that u and
v are adjacent and the edge e is incident with u and v. We denote by NG(v) (or
simply N (v) if G is clear from the context) the set of vertices of G adjacent to v.
The degree of v ∈ V (G), denoted by degG v or simply deg v when the graph G
is clear from the context, is the number of edges of G incident with v. An edge
{u, v} ∈ E(G), where deg v = 1, is called whisker on u. Given u, v ∈ V (G), a path
from v to u of length r is a sequence of vertices v = v0, . . . , vr = u ∈ V (G),
such that for each 1 ≤ i, j ≤ r , {vi−1, vi } ∈ E(G) and vi �= v j if i �= j .
A subset C of V (G) is called a clique of G if for all u, v ∈ C , with u �= v,
one has {u, v} ∈ E(G). A maximal clique is a clique that cannot be extended
by including one more adjacent vertex. A vertex v is called free vertex of G
if it belongs to only one maximal clique; otherwise, it is called an inner vertex
of G.

If T ⊆ V (G), we denote by G \T the induced subgraph of G obtained by removing
from G the vertices of T and all the edges incident in them. A set T ⊂ V (G) is called
cutset of G if cG(T \ {v}) < cG(T ) for each v ∈ T , where cG(T ) (or simply c(T ),
if the graph is clear from the context) denotes the number of connected components
of G \ T . We denote by C(G) the set of all cutsets of G. When T ∈ C(G) consists of
one vertex v, v is called a cutpoint. A connected induced subgraph of G that has no
cutpoint and is maximal with respect to this property is called a block.

A subgraph H of G spans G if V (H) = V (G). In a connected graph G, a chord of
a tree H that spans G is an edge of G not in H . The number of chords of any spanning
tree of a connected graph G, denoted by m(G), is called the cycle rank of G, and it is
given by m(G) = |E(G)| − |V (G)| + 1.
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Let S = K[{xi , y j }1≤i, j≤n] be the polynomial ring in 2n variables with coefficients
in a field K. Define fi j = xi y j − x j yi ∈ S. The binomial edge ideal of G, denoted by
JG , is the ideal generated by all the binomials fi j , for i < j and {i, j} ∈ E(G).

The cutsets of a graph G are essential tools to describe the primary decomposition
and several algebraic properties of JG . Let T ∈ C(G) and let G1, . . . , Gc(T ) denote
the connected components of G \ T . Let

PT (G) =
(⋃

i∈T

{xi , yi }, JG̃1
, . . . , JG̃c(T )

)
⊆ S

where G̃i , for i = 1, . . . , c(T ), denotes the complete graph on V (Gi ). In [9, Theorem
3.2], the authors show that the primary decomposition of JG is given by

JG =
⋂

T ∈C(G)

PT (G). (1)

A graph G is decomposable, if there exist two subgraphs G1 and G2 of G, and a
decomposition G = G1 ∪ G2 with {v} = V (G1) ∩ V (G2), where v is a free vertex of
G1 and G2. If G is not decomposable, we call it indecomposable.

Let H be a graph. The cone G of v on H is the graph with V (G) = V (H) ∪ {v}
and edges E(G) = E(H) ∪ {{v,w} | w ∈ V (H)}.

A cutset T of G is called accessible if there exists t ∈ T such that T \ {t} ∈ C(G).
A graph G is called accessible if JG is unmixed, and C(G) is an accessible set system
that is all non-empty cutsets of G are accessible.

To describe the reduced Gröbner basis of JG , in [9] the following concept has been
introduced. Let i and j be two vertices of G with i < j . A path i = i0, i1, . . . , ir = j
from i to j is called admissible if

(i) For each k = 1, . . . , r − 1 one has ik < i or ik > j ;
(ii) For any { j1, . . . , js} ⊂ {i1, . . . , ir }, the sequence i, j1, . . . , js, j is not a path.

Given an admissible path π : i = i0, i1, . . . , ir = j from i to j , where i < j ,
define the monomial

uπ =
⎛
⎝∏

ik> j

xik

⎞
⎠

⎛
⎝∏

i�<i

yi�

⎞
⎠ .

Theorem 1 Let G be a graph on [n]. Let < be the lexicographic order on S induced
by x1 > x2 > · · · > xn > y1 > · · · > yn. Then, the set

G =
⋃
i< j

{uπ fi j | π is an admissible path from i to j}

is the reduced Gröbner basis of JG with respect to <.
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A finitely generated graded module M over a Noetherian graded K-algebra R is
said to satisfy the Serre’s condition (Sr ), or simply M is an (Sr ) module if, for all
p ∈ Spec(R), the inequality

depth Mp ≥ min(r , dim Mp)

holds. The Serre’s conditions are strictly connected with the Cohen–Macaulayness of
a module, in fact M is Cohen–Macaulay if and only if it is an (Sr ) module for all
r ≥ 1.

A simplicial complex � on the set of vertices [n] is a collection of subsets of [n]
which is closed under taking subsets, that is, if F ∈ � and F ′ ⊆ F , then also F ′ ∈ �.
Every element F ∈ � is called a face of �; the size of a face F is defined to be
|F |, that is, the number of elements of F , and its dimension is defined to be |F | − 1.
The dimension of �, which is denoted by dim(�), is defined to be d − 1, where
d = max{|F | | F ∈ �}. A facet of � is a maximal face of � with respect to inclusion.
Let F(�) denote the set of facets of �. It is clear that F(�) determines �. A set
N ⊆ [n] that does not belong to� is called a nonface of�. We say that� is pure if all
facets of � have the same size. The link of � with respect to a face F ∈ �, denoted
by lk�(F), is the simplicial complex

lk�(F) = {G ⊆ [n] \ F | G ∪ F ∈ �}.

A simplicial complex � is called connected if, for every F, G ∈ F(�), there exists
a sequence of facets F = F0, . . . , Fm = G such that, for every 0 ≤ i, j ≤ m − 1,
we have Fi ∩ Fi+1 �= ∅ and Fi �= Fj , where i �= j . We say that the sequence
F = F0, . . . , Fm = G connects F and G.

Let R = K[z1, . . . , zk] be the polynomial ring in k variables over a field K, and
let � be a simplicial complex on [k]. For every F ⊆ [k], we set zF = ∏

i∈F zi . The
Stanley–Reisner ideal of � over K is the ideal I of R which is generated by those
squarefree monomials zF with F /∈ �. In other words, I� = (zF | F ∈ N (�)),
whereN (�) denotes the set of minimal nonfaces of � with respect to inclusion. The
Stanley–Reisner ring of � over K, denoted by K[�], is defined to be K[�] = R/I�.

A simplicial complex � is said to satisfy Serre’s condition (Sr ) over K, or simply
� is an (Sr ) simplicial complex over K, if the Stanley–Reisner ring K[�] of �

satisfies Serre’s condition (Sr ). An immediate consequence of [19, Theorem 1.4] is
the following result that provides a useful combinatorial tool to check if � is (S2).

Proposition 1 Let K be a field and � be a simplicial complex. Then, � is (S2) over
K if and only if, for every face F ∈ � with dim(lk�(F)) ≥ 1, the simplicial com-
plex lk�(F) is connected. In particular, the (S2) property of a simplicial complex is
independent of the base field.

3 Simplicial complex of binomial edge ideals and (S2)-condition

The aim of this section is to prove that if S/JG satisfies the Serre’s condition (S2),
then G is an accessible graph.
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Let< be amonomial order on S and in<(I ) denote the initial ideal of an ideal I with
respect to<. A consequence of [4, Theorem 1.3] is that, if I is an ideal and in<(I ) is a
square-free monomial ideal, then for any r ∈ N, S/I satisfies Serre’s condition (Sr ) if
and only if S/in<(I ) does. Since in<(JG) is square-free (see [4, Sect. 3.2]), it follows
that to study the (S2) condition for S/JG it is sufficient to study it for S/in<(JG).

From now on, we fix the lexicographic order on S induced by x1 > x2 > · · · >

xn > y1 > · · · > yn .
Let T ∈ C(G) and let G1, · · · , Gc(T ) be the connected components induced by T .

By Theorem 1, it follows immediately

in<(JG) = (
xi y j uπ | π is an admissible path from i to j, with i < j

)
,

and

in<(PT (G)) =
(⋃

t∈T

{xt , yt }
)

+
c(T )∑
k=1

(
xi y j | i, j ∈ V (Gk) and i < j

)
.

Moreover, thanks to [5, Corollary 1.12, Theorem 2.1], it holds

in<(JG) =
⋂

T ∈C(G)

in<(PT (G)). (2)

Define

PT (v) =
(⋃

t∈T

{xt , yt }
)

+
c(T )∑
k=1

({xi | i ∈ V (Gk), i < vk} ∪ {y j | j ∈ V (Gk), j > vk}
)

where v = (v1, . . . , vc(T )) ∈ V (G1) × · · · × V (Gc(T )).

Lemma 1 Let G be a graph. Let T ∈ C(G) and let G1, · · · , Gc(T ) be the connected
components induced by T . Then,

in<(PT (G)) =
⋂

v∈V (G1)×···×V (Gc(T ))

PT (v).

Proof “ ⊆′′ Let u be a generator of in<(PT (G)). If u ∈ {xt , yt } for t ∈ T , then
u ∈ PT (v), for all v ∈ V (G1) × · · · × V (Gc(T )). Let u = xi y j , with i < j and
i, j ∈ V (Gk), for some k = 1, . . . , c(T ), and consider vk , the k-th component of v.
When vk ≤ i , then y j ∈ PT (v), when vk > i , then xi ∈ PT (v). Hence, the monomial
xi y j ∈ PT (v) for all v ∈ V (G1) × · · · × V (Gc(T )).

“ ⊇′′ Let u be a generator of
⋂

v∈V (G1)×···×V (Gc(T ))
PT (v). If xt divides u, for some

t ∈ T , then u ∈ in<(PT (G)), as well. Assume that xt does not divide u, for any t ∈ T .
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For k = 1, . . . , c(T ), denote Jk = ({xi y j | i, j ∈ V (Gk) and i < j
}
) and Ivk =({xi | i ∈ V (Gk), i < vk} ∪ {y j | j ∈ V (Gk), j > vk}

)
, for vk ∈ V (Gk). Then,

in<(PT (G)) =
(⋃

t∈T

{xt , yt }
)

+
c(T )∑
k=1

Jk

and

PT (v) =
(⋃

t∈T

{xt , yt }
)

+
c(T )∑
k=1

Ivk .

Note that Ivk and Jk are both ideals of Sk = K[xi , yi ]i∈V (Gk ) ⊂ S. Moreover, Ivk and
Ivh , with vk ∈ Gk , vh ∈ Gh and k �= h, are defined on disjoint sets of variables, and
the same holds for the Jk’s. It is sufficient to prove that

Jk ⊇
⋂

vk∈V (Gk )

Ivk .

Let u ∈ ⋂
vk∈V (Gk )

Ivk . Note that u cannot be the product of only xi ’s (resp. y j ’s).
Indeed, when vk = min{a | a ∈ V (Gk)} (resp. vk = max{b | b ∈ V (Gk)}), then no
xi belongs to Ivk (resp. no y j belongs to Ivk ). Now, suppose, by contradiction, that for
any xi y j that divides u, it holds i > j . Set vk = min{i | xi divides u}. Then, all the
xi ’s and y j ’s that divide u do not belong to Ivk , namely u /∈ Ivk . It follows that if xi y j

divides u, then i < j and u ∈ Jk . ��
Let T ∈ C(G) and let G1, . . . , Gc(T ) denote the connected components of G \ T .

For i = 1, . . . , c(T ), let |V (Gi )| = mi and V (Gi ) = {vi
1, . . . , v

i
mi

}. Given v =(
v1j1 , . . . , v

c(T )
jc(T )

)
∈ V (G1) × · · · × V (Gc(T )), define

F(T , v) =
c(T )⋃
i=1

({
y j | j ∈ V (Gi ) and j ≤ vi

ji

}
∪

{
x j | j ∈ V (Gi ) and j ≥ vi

ji

})
.

Since in<(JG) is a squarefree monomial ideal, then there exists a unique simplicial
complex �< such that in<(JG) = I�< . Putting together Equation (2), Lemma 1, and
[20, Proposition 6.3.4], we obtain the following description of �<.

Corollary 1 Let G be a graph. Then, in<(JG) = I�< , where

F(�<) =
⋃

T ∈C(G)

{F(T , v) | v ∈ V (G1) × · · · × V (Gc(T ))}.

For a graded S-module M of dimension d we denote the Hilbert series of M by
H(t) = ∑d

i=0(hi (M))t i/(1−t)d and its h-vector by h = (h0, . . . , hd). The following
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well-known formula relates the f -vector ( f0, . . . , fd−1)with the h-vector of a (d−1)-
dimensional simplicial complex �:

hk =
k∑

i=0

(−1)k−i
(

d − i

k − i

)
fi−1, for k = 0, . . . , d. (3)

In [1], the authors provide a formula to compute the multiplicity of S/JG . By
knowing �< such that in<(JG) = I�< and by Equation (3), one can easily obtain
another simple way to get the multiplicity.

In the following, we deeply use the simplicial complex�< defined in Corollary 1 to
prove that if S/JG satisfies the Serre’s condition (S2), then the graph G is accessible.
Nevertheless, we observe that the simplicial complex is strongly related to the chosen
monomial order also for very simple graphs, as the following example shows.

Example 1 Let G = P2 be the path on 3 vertices with E(G) = {{1, 2}, {2, 3}} and
fix the lexicographic order on S induced by x1 > x2 > x3 > y1 > y2 > y3. Then,
C(G) = {∅, {2}} and I�< = (x1y2, x2y3), where

F(�<) = {F(∅, (1)), F(∅, (2)), F(∅, (3)), F({2}, (1, 3))}
= {{x1, y1, x2, x3}, {y1, x2, y2, x3}, {y1, y2, x3, y3}, {x1, y1, x3, y3}}.

One can immediately observe that all the facets in �< contain the variables y1 and
x3. Consider now the same graph but with a different vertex labeling with E(G) =
{{1, 3}, {2, 3}}. Fix the same term order for S. Then, C(G) = {∅, {3}} and I�< =
(x1y3, x2y3, x1y2x3), where

F(�<) = {F(∅, (1)), F(∅, (2)), F(∅, (3)), F({3}, (1, 2))}
= {{x1, y1, x2, x3}, {y1, x2, y2, x3}, {y1, y2, x3, y3}, {x1, y1, x2, y2}}.

In this case, only the variable y1 is contained in all the facets of �<. This implies that
the two simplicial complexes are not isomorphic.

Lemma 2 Let G be a graph such that JG is unmixed. Let T ∈ C(G) and v ∈ T be
a cutpoint of G. Let H1 and H2 be the two connected components of G \ {v}. For
i = 1, 2, define Ti = T ∩ V (Hi ). The following facts hold:

(i) For i = 1, 2, Ti ∪ {v} ∈ C(G);
(ii) If T1 ∪ {v} and T2 ∪ {v} are accessible, then T is accessible.

Proof First of all, we may assume |T | > 1. Indeed, if |T | = 1, then T =
{v} and the statement follows trivially. For i = 1, 2, let Si = Ti ∪ {v}. Let
{H1,1, . . . , H1,s, H2,1, . . . , H2,t } denote the connected components of G \ T , where
H1,i and H2, j are induced subgraphs of H1 and H2, respectively.

(i) The connected components of G \ S1 are {H1,1, . . . , H1,s, H2}. Suppose, by
contradiction, that S1 is not a cutset of G. This means that there exists W =
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{w1, . . . , wk} ⊆ S1, with k ≥ 1, such that c(S1) = c(S1\W ) and S1\W ∈ C(G).
If either k > 1 or k = 1 and w1 �= v, then the connected components of
G \ (S1 \ {W }) are {H ′

2, H ′
1,1, . . . , H ′

1,s}. Then, the connected components of
T \ W are {H ′

1,1, . . . , H ′
1,s, H2,1, . . . , H2,t }, that is c(T ) = c(T \ W ) = s + t ,

which is a contradiction since T is supposed to be a cutset. If k = 1 and w1 = v,
the connected components of G \ (S1 \ {v}) are {H2 ∪ {v}, H1,1, . . . , H1,s}.
Note that the connected component that contains v cannot have vertices of H1,
otherwise, as v is a cutpoint that induces H1 and H2, then v induces two connected
components in G \(S1\{v}), and then S1 should be a cutset. Since JG is unmixed
and c(S1 \{v}) = s +1, then |S1 \{v}| = s. If S2 ∈ C(G), then c(S2) = t +1 and
hence |S2| = t . It follows that |T | = |S1 \ {v}| + |S2| = s + t , but c(T ) = s + t
contradicting the hypothesis on the unmixedness of JG . If S2 /∈ C(G), then, by
repeating the same argument done for S1, we get that |S2 \ {v}| = t . Therefore,
|T | = |S1 \ {v}| + |S2 \ {v}| + 1 = s + t + 1, which is again a contradiction. We
conclude that both S1 and S2 are cutsets of G.

(ii) By hypothesis, both S1 and S2 are accessible, which implies there exist v1 ∈ S1
and v2 ∈ S2 such that S1 \ {v1}, S2 \ {v2} ∈ C(G). Moreover, since JG is
unmixed and by (i), it holds |S1| = s, |S2| = t , and |T | = s + t − 1. If
at least one between v1 and v2 is not v, assume v1 �= v, then c(G \ (S1 \
{v1})) = s and, up to relabeling, the connected components are {H1,1 ∪ H1,2 ∪
{v1}, H1,3 . . . , H1,s, H2}. Therefore, the connected components of T \ {v1} are
{H1,1∪H1,2∪{v1}, H1,3 . . . , H1,s, H2,1, . . . , H2,t }, that is c(T \{v1}) = s+t−1.
If v1 = v2 = v, then the connected components of G \ T1 and G \ T2 are
{H2 ∪ {v} ∪ H1,1, . . . , H1,s} and {H1 ∪ {v} ∪ H2,1, . . . , H2,t }, respectively. It
follows that the connected components of G \ (T \ {v}) are, up to relabeling,
{H1,1∪H2,1∪{v}, H1,2, . . . , H1,s, H2,2, . . . , H2,t }, that is c(T \{v1}) = s+t−1.
In both cases, if T \ {v1} is not a cutset, there should exist a cutset T ′ ⊂ T \ {v1}
with less than s + t −2 vertices, which induces s + t −1 connected components,
which contradicts that JG is unmixed. So, we have obtained that T \ {v1} is a
cutset, namely T is accessible.

��
Remark 1 Let G be a graph and T ∈ C(G). If all the cutset T ′, with T ′ ⊆ T , are
accessible, then T contains a cutpoint. The proof of this fact is the same of [2, Lemma
4.1], but for the sake of completeness we will report it here. To prove it, we proceed
by induction on the cardinality of |T |. If |T | = 1, the claim follows. Otherwise, since
T is accessible, there exists v ∈ T such that T \{v} ∈ C(G). By induction, there exists
a cutpoint w ∈ T \ {v} and the same holds for T .

Theorem 2 Let G be a graph such that S/JG satisfies the Serre’s condition (S2). Then,
G is an accessible graph.

Proof To prove the statement, we suppose that G is not accessible and we show that
S/JG does not satisfy the Serre’s condition (S2). If G is not accessible, then JG is
not unmixed or C(G) is not an accessible set system. If JG is not unmixed, then it
is known that the (S2)-condition is not satisfied. Hence, we can suppose that JG is

123



598 Journal of Algebraic Combinatorics (2023) 57:589–615

unmixed but C(G) is not an accessible set system. Let T ∈ C(G) be the non-empty
cutset with the minimum cardinality such that T \ {v} /∈ C(G), for every v ∈ T .
Let T = {w1, . . . , wk}, with k > 1, and, since JG is unmixed, G \ T has k + 1
connected components, say G1, . . . , Gk+1. For i = 1, . . . , k + 1, let |V (Gi )| = mi

and V (Gi ) = {vi
1, . . . , v

i
mi

}.
Fix the lexicographic order on S induced by the total order

w1 < · · · < wk < v11 < · · · < v1m1
< · · · < vk+1

1 < · · · < vk+1
mk+1

(*)

Thanks to [4, Theorem 1.3], it is sufficient to prove that S/in<(JG) does not satisfies
the Serre’s condition (S2).

Consider v = (v1m1
, . . . , vk+1

mk+1
) ∈ V (G1) × · · · × V (Gk+1) and

F(T , v) =
k+1⋃
i=1

{
yvi

1
, . . . , yvi

mi
, xvi

mi

}
∈ F(�<).

The set

F =
k⋃

i=1

{
yvi

1
, . . . , yvi

mi

}
∪

{
y
vk+1
1

, . . . , y
vk+1

mk+1
, x

vk+1
mk+1

}

is a subset of F(T , v), that is a face of �<. Consider the link of �< with respect to F .
The sets A = {xv1m1

, . . . , xvk
mk

} and B = {yw1 , . . . , ywk } belong to lk�<(F). In fact,

A∩F = ∅ and A∪F = F(T , v) ∈ F(�<),whereas, thanks to the order (�), B∩F = ∅
and B ∪ F = F(∅,u) ∈ F(�<), where u = (vk+1

mk+1
). Since |A| = |B| = k > 1, it

follows dim lk�<(F) ≥ 1. Assume, by contradiction, that lk�<(F) is connected, that
is there exists a sequence of facets A = F0, F1, . . . , Ft+1 = B of lk�<(F) such that,
for every 0 ≤ i < j ≤ t + 1, Fi ∩ Fi+1 �= ∅ and Fi �= Fj . First of all, suppose that
|Ft ∩ B| = 1 and Ft ∩ B = {ywi }, for some i = 1, . . . , k. Up to a relabeling of thewi ’s,
assume i = k. Then, there exists F(T ′,v) ∈ F(�<) such that F(T ′,v) = Ft ∪F . Note
that ywk ∈ F(T ′,v) but yw j /∈ F(T ′,v), for 1 ≤ j < k, otherwise |Ft ∩ B| > 1. Since
yw j /∈ F(T ′,v), for 1 ≤ j < k, and yv ∈ F(T ′,v), for v ∈ (V (G) \ T ) ∪ {wk}, that is
v ≥ wk , then, by definition of facets of �< and due to the order (�), xw j /∈ F(T ′,v),
for 1 ≤ j < k. From the fact that xw j , yw j /∈ F(T ′,v), for 1 ≤ j < k, it follows
that T ′ = {w1, . . . , wk−1}. This implies that T ′ = T \ {wk} ∈ C(G), but this is in
contradiction with the hypothesis that T is not an accessible cutset.

Now, suppose that |Ft ∩B| > 1.Note that |Ft ∩B| < k, otherwise Ft ∩B = B, that is
Ft = Ft+1 = B, which contradicts the hypothesis on Fi . Up to a relabeling of thewi ’s,
assume Ft ∩ B = {ywa , . . . , ywk }, with 1 < a < k. There exists F(T ′′,v′) ∈ F(�<)

such that F(T ′′,v′) = Ft ∪ F . For i < a, it holds ywi /∈ Ft , hence ywi /∈ F(T ′′,v′).
Due to the order (�), xwi /∈ F(T ′′,v′), for 1 ≤ i < a. Therefore, xwi , ywi /∈ F(T ′′,v′)
for 1 ≤ i < a and T ′′ = {w1, . . . , wa−1}. By hypothesis, T is the smallest not
accessible cutset, then any cutset which is a proper subset of T is accessible. Since
T ′′ ⊂ T , then T ′′ is accessible and, by Remark 1, T ′′ contains a cutpoint, we say w1.
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(A) (B)

Fig. 1 Graphs (A) and (B) belong to the family described in Example 2

Then, w1 induces two connected components, H1 and H2. Let Ti = T ∩ V (Hi ), for
i = 1, 2. By Lemma 2(i), for i = 1, 2, Ti ∪ {w1} is a cutset of G. By the minimality
of T , both T1 ∪ {w1} and T2 ∪ {w1} are accessible cutsets of G. By Lemma 2(ii), also
T is an accessible cutset, which is a contradiction.

It follows that lk�<(F) is not connected, and then S/in<(JG) does not satisfy the
Serre’s condition (S2).

��
Remark 2 Let G be a graph on [n], with n ≤ 12, such that JG is unmixed. For all
monomial orders < and all F ∈ �< such that dim F < � n+1

2 �, it holds that lk�<(F)

is connected. To verify this fact, we have implemented a computer program, see [12],
that checks the Serre’s condition (S2) for S/JG . In particular, there exists a unique
family of graphs such that lk�<(F) is disconnected for F ∈ �< with dim F = � n+1

2 �,
that is the one in Example 2.

Example 2 Let s ≥ 1 and n ≥ 3. Let G be a graph on [n] obtained by joining s + 1
complete graphs G1, . . . , Gs+1 such that

Gi ∼= Ks+1 for i = 1, . . . , s, and Gs+1 ∼=
{

Ks+1 if n is odd,

Ks+2 if n is even,

and Gi ∩ G j = H , where H = Ks , for all 1 ≤ i < j ≤ s + 1. See Fig. 1 for an
example, with n = 7 (Fig. 1A) and n = 8 (Fig. 1B).

Note that for each n ≥ 3, there exists such a graph with n vertices and it is unique.
In particular, if n is odd, then n = 2s + 1, otherwise n = 2s + 2. We observe that
C(G) = {∅, T }, where T = V (H). Moreover, JG is unmixed but G is a block that is
not a complete graph; hence, JG is not Cohen–Macaulay by [1].

Fix the lexicographic order on S induced by x1 > · · · > xn > y1 > · · · > yn .
Let V (H) = {n − s + 1, . . . , n}, and consider F = {y1, . . . , yn−s, xn−s} ∈ �<. Let
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n ≥ 3 be an odd integer. In this case, dim F = n − s = n+1
2 . The facets of the link

of F in �< are only two: F(∅, n − s) \ F and F(T , (1, . . . , n − s)) \ F , which are
respectively {xn−s+1, . . . , xn} and {x1, . . . , xn−s−1} and they are obviously disjoint.
It follows that lk�<(F) is disconnected.

Let n ≥ 3 be even.Here, dim F = � n+1
2 �. Let V (Gs+1) = {n−s, n−s−1}∪V (H).

The facets of the link of F in �< are only two: F(∅, n − s) \ F and F(T , (1, . . . , n −
s − 2, n − s)) \ F , which are respectively {xn−s+1, . . . , xn} and {x1, . . . , xn−s−2} and
they are obviously disjoint. It follows that lk�<(F) is disconnected.

Let G be a graph such that JG is unmixed. The following result states that to verify
the Serre’s condition (S2) for S/JG is not necessary to check the link of all the faces
F of �<.

Proposition 2 Let G be a graph on [n] such that JG is unmixed. Let F =
{xi1 , . . . , xit , y j1 , . . . , y js } ∈ �<, with 1 ≤ j1 < · · · < js < i1 < · · · < it ≤ n, for
1 ≤ s, t ≤ n, and dim F ≤ n − 2. Then, lk�<(F) is connected.

Proof Let F = {xi1 , . . . , xit , y j1 , . . . , y js } ∈ �<, with 1 ≤ j1 < · · · < js < i1 <

· · · < it ≤ n, for 1 ≤ s, t ≤ n, and dim F ≤ n −2. Let F1, F2 be facets of lk�<(F). If
F1∩ F2 �= ∅, then they are connected and there is nothing to prove. Therefore, we may
assume that F1∩ F2 = ∅. F ∪ F1 and F ∪ F2 are facets of�< and both of them contain
y js , since y js ∈ F by hypothesis. Due to Corollary 1, there exist xa ∈ F ∪ F1 and
xb ∈ F ∪ F2 such that js ≤ a, b ≤ i1. Let a = min{a | xa ∈ F ∪ F1 and js ≤ a ≤ i1}
and b = min{b | xb ∈ F ∪ F2 and js ≤ b ≤ i1}.

Note that, if a = b = i1, then yi1 ∈ F ∪ Fi , for i = 1, 2, but yi1 /∈ F , then
yi1 ∈ F1 ∩ F2, which is a contradiction since F1 and F2 are supposed to be disjoint.
Moreover, if a, b < i1 and a = b, then xa ∈ F1∩ F2, which is a contradiction, as well.
Therefore, let a �= b, and, without loss of generality, suppose a < b. Consider the
facets F(∅, v), for a ≤ v ≤ b, namely F(∅, v) = {xi | v ≤ i ≤ n}∪ {y j | 1 ≤ j ≤ v}.
Note that, for all a ≤ v ≤ b, F(∅, v) ∩ F = F , hence Fv = F(∅, v) \ F =
{xi | v ≤ i ≤ n, i �= i1, . . . , it } ∪ {y j | 1 ≤ j ≤ v, j �= j1, . . . , js} is a facet
of lk�<(F). Consider the sequence F1, Fa, Fa+1, . . . , Fb, F2 of facets of lk�<(F).
Note that F1 ∩ Fa ⊇ {xa} and Fb ∩ F2 ⊇ {yb}. If i1 = js + 1, then a = js and
b = i1, since dim F ≤ dim�< − 2, there exists either i∗ > i1 such that xi∗ /∈ F or
j∗ < js such that y j∗ /∈ F . It follows that either Fa ∩ Fb ⊇ {xi∗} or Fa ∩ Fb ⊇ {y j∗},
that is F1, Fa, Fb, F2 is a sequence of facets of lk�<(F) that connects F1 and F2. If
i1 �= js + 1 and a + 1 �= i1, it holds Fa ∩ Fa+1 ⊇ {xa+1} and Fi ∩ Fi+1 ⊇ {yi } for
all i = a + 1, . . . , b − 1. If i1 �= js + 1 and a + 1 = b = i1, then Fa ∩ Fb = {yi1}.
Hence, F1, Fa, Fa+1, . . . , Fb, F2 is a sequence of facets of lk�<(F) that connects F1
and F2. Therefore, lk�<(F) is connected. ��

4 Accessible blocks with whiskers

In this section, we study a particular class of accessible graphs. We know from [2,
Remark 4.2] that if an accessible graph is a block, then it is a complete graph. It arises
a natural question:
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“Under which hypotheses a block with whiskers is accessible?”

Let G be a connected graph such that JG is unmixed and B be a block of G. Denote
by W = {w1, . . . , wr } the set of cutpoints of G which are vertices of B. Then,

G = B ∪
(

r⋃
i=1

Gi

)
(4)

where V (Gi ) ∩ V (B) = {wi } for i = 1, . . . , r , and B \ W , G1 \ {w1}, . . . , Gr \ {wr }
are the connected components of G \ W .

By the decomposition (4), we define a block with whiskers, namely B, a graph
obtained, roughly speaking, by replacing each subgraph Gi with a whisker. That is

1. V (B) = V (B) ∪ { f1, . . . , fr };
2. E(B) = E(B) ∪ {{wi , fi } | i = 1, . . . , r}.
Note that V (B) = V (G)/ ∼, where the relation ∼ identifies each vertex of B with
itself and, for i = 1, . . . , r , if a, b ∈ V (Gi ) \ {wi }, then a ∼ b, and we denote by fi

the equivalence class of V (Gi ) \ {wi }.
Proposition 3 Let G be an accessible graph and let B be a block of G. The graph B
constructed as above is accessible.

Proof Let π : V (G) → V (G)/ ∼ be the canonical projection. Let T ∈ C(B). By
construction, for any i = 1, . . . , r fi is a free vertex of B, hence T ⊂ V (B). Denote
by π the restriction of π to V (G) \ T . We prove that π induces a bijection between
the connected components of G \ T and the ones of B \ T .

Let A be a connected component of G \ T . For any i = 1, . . . , r , let Gi be
the connected component of G \ W , where W is the set of all the cutpoints of B.
Let a, b ∈ A, and a, a1, . . . , a�, b be a path in V (G) \ T from a to b. If a and b
belong to the same Gi , then π(a) = π(a j ) = π(b) = fi , for all j = 1, . . . , �.
Therefore, they are obviously connected in B \ T . If a ∈ B, and b ∈ Gi , then
there exists j such that a j , . . . , a� ∈ Gi ∪ {wi } with, in particular, a j = wi . Then,
π(a) = a,π(a1) = a1, . . . ,π(a j−1) = a j−1, fi is a path from π(a) and π(b) = fi .
The other cases followby the same argument. Therefore, if A is a connected component
of G \ T , thenπ(A) is a connected component of B \ T .

Let D be a connected component of B \ T . Let c, d ∈ D and let c, u1, . . . , u�, d be
a path in D from c to d. Note that, by the definitions of path and B, for i = 1, . . . , �,
ui ∈ V (B) \ T , that isπ−1(ui ) = ui . If c = f j (resp. d = f j ) for some j = 1, . . . , r ,
then set π−1(c) = v (resp. π−1(d) = v), where v ∈ V (Hj ) and {w j , v} ∈ E(G).
Otherwise, π−1(c) = c (resp. π−1(d) = d). Then, π−1(c), u1, . . . , u�,π

−1(d) is
a path in V (G) \ T . It follows that if D is a connected component of B \ T , then(
D \ { f j } j∈J

) ∪ ⋃
j∈J G j is a connected component of G \ T , where J is the set of

indices such that f j ∈ D.
The bijection between the connected components of G \ T and the ones of B \ T

implies cG(T ) = cB(T ). Since JG is unmixed by hypothesis, then JB is unmixed, as
well. Moreover, if T ∈ C(B), then T ∈ C(G). Due to the accessibility of G, there
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exists a vertex a such that T \ {a} ⊂ V (B) is a cutset of G and so, using the bijection,
T \ {a} is a cutset of B, namely B is accessible. ��

A block with a fixed number of vertices, say n, and minimum number of edges is
a cycle Cn . It is useful to connect the degree of the vertices with the cycle rank.

Lemma 3 Let G be a connected graph. The cycle rank of G is

m(G) = 1 +
∑

v∈V (G)(deg v − 2)

2
.

Proof From ([8, Theorem 4.5(a)]), we know m(G) = q − p + 1 where q = |E(G)|
and p = |V (G)|. We can see

2q =
∑

v∈V (G)

deg v and p =
∑

v∈V (G)

1.

So, we conclude that

m(G) = q − p + 1 = 1 +
∑

v∈V (G)(deg v − 2)

2
.

��
By the previous lemma, we observe that for a graph G with a fixed cycle rank

m(G) > 1, the number of vertices with degree greater than 2 is bounded, but we do
not have any information on the number of vertices v with deg v ≤ 2. We will show
that under the hypothesis of accessibility this cardinality is bounded, too.

Now we are going to state some general results for accessible blocks that we are
going to exploit for the classification of accessible graphs with cycle rank 3 and in
Sect. 5. Let us introduce some notation.

Definition 1 Given a block B of a graph G, we say that a vertex v ∈ V (B) is pivotal
if degB v ≥ 3.

Note that in the definition of a pivotal vertex v, degB v refers to the degree of v in B,
and not in G.

Definition 2 Let B be a block and let a, b ∈ V (B) be two pivotal vertices. A path Li

of length i from a to b and such that any v ∈ V (Li ) \ {a, b} is not pivotal is said a
line from a to b.

Lemma 4 Let G be an accessible graph and B be a block of G. If two pivotal vertices
a, b of B are connected by a line Li , with i ≥ 2, then either a or b is a cutpoint in B
and the other is not. Moreover, if we assume that a is the cutpoint, then the following
conditions hold:

1. i < 4;
2. If i = 3, there exists a unique vertex c ∈ V (Li ) \ {a, b} that is a cutpoint in B. In

particular, c is such that {a, c} ∈ E(G);
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3. If m(G) ≥ 3, there are no other lines L j from a to b, with j ∈ {2, 3}.

Proof We can focus on the graph B which is accessible by Proposition 3.
Let a and b be two pivotal vertices of B connected by a line Li , with i ≥ 2. We

observe that T = {a, b} is a cutset of B, and hence of B. In fact, B \ T consists of
at least two connected components: Li \ {a, b} and B \ Li . Since B is accessible, at
least one between a and b has to be a cutpoint, assume a. Namely, there is a whisker
{a, f } ∈ E(B). Moreover, at most one between a and b is a cutpoint, otherwise there
should be another whisker {b, f ′} and cB(T ) ≥ 4, namely { f }, { f ′}, Li \ {a, b} and
B \ (Li ∪ { f , f ′}), where the last one is not empty (otherwise B is not a block).

From now on, we assume that a is a cutpoint in B, while b is not.

(1) Let Li = a, a1, · · · , ai−1, b be a line from a to b. Assume i ≥ 4. T = {a, a2} ∈
C(B) and using the same argument of above, a2 is not a cutpoint andB \T consists
of three connected components: { f }, {a1} and B \ (T ∪ {a1}). At the same time,
T ′ = {a2, b} ∈ C(B) but neither a2 nor b is a cutpoint, which contradicts the
hypothesis of G accessible.

(2) Let i = 3 and L3 = a, a1, a2, b be a line from a to b. Since T = {a1, b} ∈ C(B),
B is accessible and b is not a cutpoint of B, then a1 is a cutpoint of B. Moreover,
since T ′ = {a, a2} ∈ C(B), then a2 is not a cutpoint otherwise, cB(T ) = 4.

(3) Suppose there are two lines L ′
j �= Li , with i, j ∈ {2, 3}, from a to b. Note that

B \ (Li ∪ L ′
j ) is not empty, since by hypothesis b is pivotal and then there exists

at least one vertex v ∈ V (B) such that {b, v} ∈ E(B) and v /∈ Li ∪ L ′
j . Consider

the cutset T = {a, b}. Then, B \ T consists of at least 4 connected components:
{ f }, Li \ {a, b}, L ′

j \ {a, b}, and B \ (Li ∪ L ′
j ), which is a contradiction.

��
Lemma 5 Let G be an accessible graph and B be a block of G. If two pivotal vertices
a, b of B are connected by a line L3, then {a, b} ∈ E(B).

Proof It is sufficient to show that the vertices a and b are not separable, namely there
does not exist a cutset ofG such that inG\T the vertices a and b belong to two different
connected components. By Lemma 4, a is a cutpoint in B and let {a, f } ∈ E(B) be
the whisker on a. Then,

G \ {a, b} = { f } � (L3 \ {a, b}) � H ,

where H is a non-empty connected component of G \{a, b}. Assume by contradiction
that a and b are separable. Let L3 = a, a1, a2, b be a line from a to b and let T be a
minimal cutset that separates a and b. T has vertices in L3 \{a, b} and in H . If a1 ∈ T ,
then T ′ = (T \ {a1}) ∪ {a2} is a cutset, as well. By Lemma 4 (2), a1 is a cutpoint, but
a2 is not. Therefore, |T | = |T ′| but c(T ) = c(T ′) + 1, which is a contradiction. ��

As an application, by means of the implementation described in Sect. 6, we will
prove that the accessible blocks with whiskers of cycle rank 3 are the ones in Figs. 3
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(A) (B) (C) (D)

Fig. 2 All classes of blocks having cycle rank 3

Fig. 3 The accessible chains of cycles with cycle rank 3

Fig. 4 The class K4

and 4. From Lemma 3, we have a bound on the number of pivotal vertices and, when
m(G) = 3 and G is a block, it holds

∑
v pivotal vertices of G

(deg v − 2) = 2 (m(G) − 1) = 4.

All of the possible blocks with cycle rank 3 are shown in Fig. 2, where the dot points
denote pivotal vertices v, the number is deg v −2 and the dashed line represents a line
from a pivotal vertex to another. As regards accessible graphs B with m(B) = 3, they
are obtained from the blocks B in Fig. 2 by adding opportune whiskers. By Lemma 4,
there are no accessible graphs obtained from the blocks in the class of Fig. 2 (A). In
Figs. 3 and 4, all the accessible graphs B with m(B) = 3 are displayed. As regards
Fig. 3, the graphs (1)–(4) are obtained from the ones in Fig. 2 (B), while the graph (5)
from the ones in Fig. 2C. These five graphs are chain of cycles that we characterize in
the next section. Finally, the graphs in Fig. 4 are all obtained from the blocks in Fig. 2D.
In particular, they are obtained by the complete graph K4 substituting any edge by a
line Li , with i ∈ 1, 2, 3, and by adding whiskers in order to have accessibility of the
graph. We denote this class of graphs by K4. Note that in Fig. 4 (1) it is possible to
add some whiskers.
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In the next results, by focusing on the lines connecting two pivotal vertices, we
exhibit that starting from blocks belong to the class (D) of Fig. 2, there are no other
possible accessible blocks with whiskers than the graphs (1)–(4) in Fig. 4.

Lemma 6 Let B be an accessible graph such that B is a block with m(B) = 3 that
belongs to the class (D) of Fig. 2. Then, in B there are at most two lines L2, which
have no vertex in common and there is no line L3.

Proof Let a, b, c, d be the pivotal vertices of B. Without loss of generality, assume
that there are two lines L2 in B having a vertex in common: one from a to b and a
second one from a to c. We claim that a has a whisker in B and b and c have no
whiskers. In fact, {a, b} and {a, c} ∈ C(B). By Lemma 4, either a has a whisker or
both b and c have whiskers. Moreover, T = {a, b, c} ∈ C(B) and if b and c have
whiskers c(T ) ≥ 5. Hence, the claim follows.

Let a1 (resp. a′
1) be the vertex of degree 2 in the line L2 from a to b (resp. to c).

Let T ′ = {c, d, a1} ∈ C(B) and T ′′ = {b, d, a′
1} ∈ C(B). If there are no subsets

of T ′ (resp. T ′′) disconnecting the block, then d, a1 and a′
1 have whiskers. But, for

T ′′′ = {d, a1, a′
1} ∈ C(B), it holds c(T ′′′) = 5, which is a contradiction. Otherwise,

assume, without loss of generality, that there exists a line from c to d. Then, by
Lemma 4, d has a whisker. Therefore, {a, c, d} is a cutset of B̄ and B̄ \ {a, c, d}
consists of 5 connected components, which is a contradiction.

Finally, suppose by contradiction that we have a line L3 from a to b. By Lemma 5,
{a, b} ∈ E(G). This implies that the cycle rank of G is greater than 3. ��
Corollary 2 The accessible graphs B such that B belongs to the class in Fig. 2D are
all and only the graphs in K4 displayed in Fig. 4.

Proof By Lemma 6, we have at most two lines L2 connecting the 4 pivotal vertices
{a, b, c, d} and no line L3. Moreover, we have no lines Li with i > 3 by Lemma 4. If
B has no line L2, then B is a K4 with or without whiskers (Fig. 4 (1)).

If B has 2 lines L2, thanks to Lemma 6 the two lines have no vertices in common,
that is we have V (B) = {a, b, c, d, e, f }, where e and f are the only non-pivotal
vertices. Moreover,

E(B) = {{a, c}, {a, d}, {b, c}, {b, d}, {a, e}, {b, e}, {c, f }, {d, f }}.

Hence, the graph B is bipartite with bipartition {a, b, f } � {c, d, e}. Moreover, by
Lemma 4, we have only two whiskers on v and w, with v ∈ {a, b} and w ∈ {c, d} (see
Fig. 4 (2)).

Suppose B has exactly one line L2. Assume it is from a to b and denote by e the
unique vertex of degree 2 in L2. We observe that the non-empty cutsets of B are {a, b}
and {c, d, e}. By Lemma 4, without loss of generality, we may assume that a has a
whisker and b has no whisker. Since {c, d, e} has cardinality 3 and none of its subsets
is a cutset of the block, we have that exactly 2 vertices in {c, d, e} have a whisker.
That is either both c and d have a whisker, or one whisker is on e and the other one
is, without loss of generality, on c. Then, the obtained B are the non-bipartite and
non-complete graphs (3) and (4) in Fig. 4. ��
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5 Chain of cycles

In this section,we define a new family of graphs, the chain of cycles, andwe classify the
oneswithCohen–Macaulay binomial edge ideal bymeans of combinatorial properties.

Definition 3 Let B be a block with m(B) = r such that B = ⋃r
i=1 Di where Di are

cycles, E(Di ) ∩ E(Di+1) = E(P), where P is a path, and, for all j �= i − 1, i, i + 1,
E(Di ) ∩ E(D j ) = ∅. We call B a chain of cycles.

Lemma 7 Let B be an accessible graph such that B = ⋃r
i=1 Di is a chain of cycles.

Then, Di ∈ {C3, C4} and E(Di ) ∩ E(Di+1) is an edge of B.

Proof If r ∈ {1, 2}, the claim follows by [18, Fig. 7] and the proof of [17, Theorem
2]. From now on, assume r ≥ 3, that is m(B) ≥ 3.

Let i = 1, and leta, b ∈ V (D1)∩V (D2)be pivotal vertices of B. ByLemma4, there
is a unique line Li , with i ∈ {2, 3}, from a to b. Hence, wemay assume E(D1)∩E(D2)

is an edge and D1 is either C3 or C4. By the same argument, Dr has the same property.
Let i ∈ {2, . . . , r − 1} and let a, b ∈ V (Di ) ∩ V (Di+1) be pivotal vertices of B.

T = {a, b} is a cutset of B and since B is accessible, either a or b is a cutpoint in B.
Therefore, E(Di ) ∩ E(Di+1) is an edge, due to the unmixedness of JB .

Let a, b ∈ V (Di−1) ∩ V (Di ) and c, d ∈ V (Di ) ∩ V (Di+1) be pivotal vertices of
B. Let T = {a, b} and T ′ = {c, d}. Assume that c /∈ T , that is c is different from
a and b, and, without loss of generality, assume that there exists a line L j from a to
c. We will prove that j = 1. By contradiction, suppose j > 1. Hence, T ′′ = {a, c}
is a cutset. By Lemma 4 applied to T ′′ and due to the hypothesis on the accessibility
applied to T and T ′, we have that either a and d or c and b have a whisker. Therefore,
either cB({a, d}) = 4 or cB({b, c}) = 4. In both cases, we obtain a contradiction.

It follows that {a, c} is an edge and either b = d or {b, d} is an edge. That is Di is
either C3 or C4. ��
Remark 3 By Lemma 7, we can relabel the vertices of B so that V (Di ) ∩ V (Di+1) =
{wi , ui } and such that ifwi �= wi+1 (resp. ui �= ui+1), then the edge {wi , wi+1} (resp.
{ui , ui+1}) belongs to E(Di+1) and does not belong to any cycle D j for j �= i + 1.

Lemma 8 Let B be an accessible graph such that B = ⋃r
i=1 Di is a chain of cycles.

Following the labeling defined in Remark 3, every wi is a cutpoint in B and ui is not
a cutpoint in B.

Proof We observe that {w1, u1} is a cutset of B. Hence, due to accessibility of B either
w1 or u1 is a cutpoint inB. Without loss of generality, wemay assumew1 is a cutpoint.
We observe that also {u1, w2}, {w1, u2} are cutsets of B. Hence,w2 must be a cutpoint
and u2 cannot be a cutpoint. Applying the same argument for all {wi , ui }, the assertion
follows. ��
Remark 4 From now on, thanks to Lemmas 5 and 8, we may consider the following
partition of the set of vertices of B:

V (B) = W � U ,
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where W consists of all the cutpoints of B, and U = V (B) \ W . We observe that the
induced subgraphs on W and U (respectively) are paths.

Lemma 9 Let B be an accessible graph such that B = ⋃r
i=1 Di is a chain of cycles.

If Di = C4, then Di+1 = C3.

Proof By contradiction, suppose that Di and Di+1 are both C4. By Lemma 8, wi−1,
wi , wi+1 are all cutpoints while ui−1, ui , ui+1 are not cutpoints. We can see that
T = {wi−1, ui , wi+1} ∈ C(B) and c(T ) = 5. Contradiction. ��
Lemma 10 Let B be an accessible graph such that B = ⋃r

i=1 Di is a chain of cycles.
Let v ∈ V (B) satisfying one of the following conditions:

(1) degB(v) ≥ 5;
(2) degB(v) ≥ 4 and v is a vertex of a C4.

Then, v is a cutpoint.

Proof In case (1), v belongs to the cycles Dk, Dk+1, Dk+2, Dk+3 for some k ∈
{1, . . . , r − 3} with Dk = . . . = Dk+3 = C3. From Lemma 7, one has E(Dk+ j−1) ∩
E(Dk+ j ) = {{v, v j }} for j ∈ {1, 2, 3} and some v1, v2, v3 ∈ V (B).

In case (2), v belongs to the cycles Dk, Dk+1, Dk+2 for some k ∈ {1, . . . , r−2}with
Dk = Dk+1 = C3 and Dk+2 = C4. FromLemma7, one has E(Dk+ j−1)∩E(Dk+ j ) =
{{v, v j }} for j ∈ {1, 2} and some v1, v2 ∈ V (B). Moreover, let v3 be the vertex of
Dk+2 adjacent to v2, it follows that {v, v3} is a cutset of B.

In both cases, we have Ti = {v, vi } ∈ C(B) for i = 1, 2, 3. Since B is accessible,
we obtain that each Ti contains exactly a cutpoint. By contradiction, assume that v is
not a cutpoint. This implies that v1, v2 and v3 belong to W , namely they are cutpoints
in B. We observe that T = {v, v1, v3} ∈ C(B), but c(T ) = 5. Contradiction. ��

Given a graph G, we denote by Gv the graph obtained from G by adding edges
{u, w} to E(G) for all u, w ∈ V (G) adjacent to v. We recall the following definition
given first in [2].

Definition 4 Let G be a graph. JG is strongly unmixed if the connected components
of G are complete graphs or if JG is unmixed and there exists a cutpoint v of G such
that JG\{v}, JGv and JGv\{v} are strongly unmixed.

Remark 5 Let G be a graph and let v,w ∈ V (G) with v �= w. Then, (G \ {v})w =
Gw \ {v}. Clearly V ((G \ {v})w) = V (Gw \ v) = V (G \ {v}). We have:

E(Gw \ {v}) = (E(G) ∪ {{x, y} | x, y ∈ NG(w)}) \ {{v, u} | u ∈ NGw(v)}.

Moreover, we observe that NGw(v) is either equal to NG(v) if {v,w} /∈ E(G) or to
NG(v) ∪ NG\{v}(w) if {v,w} ∈ E(G), that is

E(Gw \ {v}) = (E(G) \ {{v, u} | u ∈ NG(v)}) ∪ {{x, y} | x, y ∈ NG\{v}(w)}
= E((G \ {v})w).
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Remark 6 Let G be a graph such that JG is strongly unmixed with respect to the
cutpoint w and let r = |C(G)|.
1. Since JG\{w} is strongly unmixed, then it is unmixed and from [2, Proposition 5.2]

we have

C(G \ {w}) = {S ⊂ V (G \ {w}) : S ∪ {w} ∈ C(G)}.

As ∅ ∈ C(G) cannot be expressed as S ∪ {w}, it follows |C(G \ {w})| < r .
2. From [2, Lemma 4.5.(1)], we have that C(Gw) ⊆ C(G) and {w} ∈ C(G) \ C(Gw),

that is |C(Gw)| < r .
3. From [2, Lemma 5.5], we have C(Gw \ {w}) ⊆ C(Gw), that is |C(Gw \ {w})| < r .

Lemma 11 Let G be a graph such that JG is unmixed and let v ∈ V (G) be a free
vertex of G. If JG\{v} is strongly unmixed, then JG is strongly unmixed.

Proof We proceed by induction on the cardinality of C(G \ {v}), hence set r = |C(G \
{v})|.

If r = 0, then G \ {v} is a complete graph. The latter implies that G is a complete
graphwith or without a whisker, and it is immediate to see that JG is strongly unmixed.

We assume r > 0 and the thesis true for any graph G \ {v} with |C(G \ {v})| < r .
Let {w} ∈ C(G \{v}) such that the binomial edge ideals of (G \{v})\{w}, (G \{v})w,
and (G \ {v})w \ {w} are strongly unmixed. We observe thatw is also a cutpoint for G,
otherwise {v,w} is a cutset for G contradicting the fact that v is a free vertex. From
Remark 5, one has that (G \ {v})w = Gw \ {v} and (G \ {v})w \ {w} = Gw \ {v,w},
and such graphs satisfy the inductive hypothesis by Remark 6 applied to G \ {v}; the
assertion follows. ��
Lemma 12 Let G1 and G2 be two graphs and let G = G1 ∪ G2 be such that
V (G1)∩ V (G2) = {v}, with v free vertex of G1 and G2. The following conditions are
equivalent:

1. JG1 and JG2 are strongly unmixed (resp. G1 and G2 are accessible);
2. JG is strongly unmixed (resp. G is accessible).

Proof With respect to accessibility, the two conditions are equivalent by [16, Propo-
sition 2.6] and [16, Lemma 2.3]. Now we focus on strong unmixedness.

(1)⇒(2). By [16, Proposition 2.6], JG is unmixed. We proceed by induction on
the cardinality r of C(G). We observe that r ≥ 2 since G is decomposable, hence
we take r = 2 as base case. In this case, C(G) = {∅, {v}}, that is G1 and G2 have
no cutpoints, and since they are strongly unmixed it follows that they are complete
graphs, and it is easy to observe that G is also strongly unmixed. By using the same
argument, if both G1 and G2 have no cutpoints, then r = 2. We assume r > 2 and
that the thesis holds true for any decomposable graph H = H1 ∪ H2 with JH1 and JH2

strongly unmixed with |C(H)| ≤ r − 1. Since r > 2, then G1 or G2 has a cutpoint, as
we have pointed out above. Without loss of generality, let w be a cutpoint of G1 such
that JG1\{w}, J(G1)w and J(G1)w\{w} are strongly unmixed. By applying Remark 6 to
the graph G1, and by using the fact that

G \ {w}=(G1 \ {w}) ∪ G2, Gw =(G1)w ∪ G2, Gw \ {w}=((G1)w \ {w}) ∪ G2,
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where in each graph the overlapping vertex is the free vertex v, one has that such
graphs satisfy the inductive hypothesis and have a strongly unmixed binomial edge
ideal, that is JG is strongly unmixed.

(2)⇒(1). We proceed by induction on the cardinality r of C(G). We observe that
r ≥ 2 since G is decomposable, hence we take r = 2 as base case. In this case,
C(G) = {∅, {v}}, that is v is the unique cutpoint. By [16, Lemma 2.3], the graphs
G1 and G2 have no cutsets. Therefore, G1 and G2 are complete and hence strongly
unmixed. We assume r > 2 and that the thesis holds true for any graph H with
|C(H)| ≤ r − 1. Since JG is strongly unmixed, we take a cutpoint w of G such that
JG\{w}, JGw and JGw\{w} are strongly unmixed. If w = v, then we obtain that JG1\{v}
and JG2\{v} are strongly unmixed, and since v is a free vertex of G1 and G2, then the
assertion follows from Lemma 11. Ifw �= v, we assume without loss of generality that
w ∈ V (G1\{v}).We obtain thatG\{w} has two connected components, H = H1∪G2
with V (H1)∩V (G2) = {v} and H2. From the strong unmixedness of JG\{w} and from
Remark 6.(1), we obtain that C(G \ {w}) < r . Since H is an induced subgraph of
G \ {w}, then |C(H)| < r , and from the inductive hypothesis we obtain that JH1

and JG2 are strongly unmixed, while JH2 is strongly unmixed by construction. Since
G1\{w} = H1∪H2, then JG1\{w} is also strongly unmixed.By using similar arguments
and Remark 6, one can prove that also J(G1)w and J(G1)w\{w} are strongly unmixed,
that is JG1 is strongly unmixed. ��
Setup 1 Let B be a block with whiskers, where B = ⋃r

i=1 Di is a chain of cycles,
satisfying the following properties:

1. Each Di ∈ {C3, C4};
2. If Di = C4 then Di+1 = C3;
3. E(Di ) ∩ E(Di+1) = {{wi , ui }}, where wi is a cutpoint and ui is not a cutpoint;
4. {wi , wi+1} ∈ E(Di+i ) (resp. {ui , ui+1} ∈ E(Di+1)) or wi = wi+1 (resp. ui =

ui+1);
5. If D1 = C4 with V (D1) = {w0, w1, u0, u1} with {w0, w1}, {u0, u1} ∈ E(D1),

then w0 and w1 are cutpoints, whereas u0 and u1 are not cutpoints;
6. If Dr = C4 with V (Dr ) = {wr , wr+1, ur , ur+1} with {wr , wr+1}, {ur , ur+1} ∈

E(Dr ), then wr and wr+1 are cutpoints, whereas ur and ur+1 are not cutpoints;
7. If v ∈ V (B) with deg(v) ≥ 5 or deg(v) ≥ 4 with v a vertex of a C4, then v is a

cutpoint.

In Fig. 5, an example of a graph B satisfying Setup 1 is displayed.

Lemma 13 Let B be a graph satisfying Setup 1, let V (B) = U �W as in Remark 4 and
let T ∈ C(B). Then, for all u ∈ U ∩T there exists w ∈ W ∩T such that {u, w} ∈ C(B).

Proof By contradiction, assume that there exists u ∈ T ∩ U such that any vertex
w ∈ W for which {u, w} ∈ C(B) does not belong to T . Let T ′ = T \ {u}. We prove
that cB(T ) = cB(T ′). Let H be the connected component of B \ T ′ containing u. We
prove that H \ {u} is connected. Let v, v′ ∈ V (H \ {u}) and let π : v, v1, . . . , v�, v

′ be
a path in H from v to v′. If u /∈ V (π), then v and v′ are connected in H \ {u} through
π . If u ∈ V (π), then π : v, v1, . . . , vi−1, u, vi+1, . . . , v�, v

′.
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Fig. 5 A graph B satisfying Setup 1

We claim that there exists a path vi−1, z1, . . . , zm, vi+1 with {u, z j } ∈ C(B) and
z j /∈ T for any j ∈ {1, . . . , m}. If vi−1, vi+1 ∈ W , then vi−1 = w j , vi+1 = wk with
j < k as in the Setup 1, hence the vertices w j+1, . . . , wk−1 make a path between w j

and wk . Furthermore, being w j , wk adjacent to u, then {u, w j+1}, . . . , {u, wk−1} ∈
C(B) and in particular w j+1, . . . , wk−1 /∈ T . In this case, the claim follows.

Now, we deal with the case vi−1 or vi+1 ∈ U . Observe that any vertex u′ ∈ U
adjacent to u is also adjacent to a vertex w′ ∈ W such that {u, w′} ∈ C(B). In fact, let
Dk be the cycle containing u and u′. The vertex w′ �= u adjacent to u′ that belongs
to Dk is such that {u, w′} disconnects u′ from the rest of the graph. That is, if one
or both of vi−1, vi+1 are in U , by the previous arguments we find the desired path in
W . In any of the above cases, we find that H \ {u} is connected, that is T /∈ C(B).
Contradiction. ��
Corollary 3 Let B be a graph satisfying Setup 1, and let T ∈ C(B). Then, for any
u ∈ U ∩ T we have T ′ = T \ {u} ∈ C(B). In particular, C(B) is an accessible set
system.

Proof Let a ∈ T ′. Assume a ∈ U . We claim cB(T ′) > cB(T ′ \ {a}). Set H =
B̄ \ (T ′ \ {a}). By contradiction, assume that cB(T ′) = cB(T ′ \ {a}), then any two
vertices v, v′ ∈ NH (a) are connected through a path in W , and since a ∈ U ∩ T , then
there is no b ∈ W ∩ T such that {a, b} ∈ C(B) and this contradicts Lemma 13. From
Lemma 13 there exists b ∈ W ∩ T such that {a, b} ∈ C(B). In particular, b ∈ T ′. If
a ∈ W , namely a is a cutpoint of B, then cB(T ′) > cB(T ′ \ {a}).

Furthermore, for any non-empty T ∈ C(B) if u ∈ T ∩U �= ∅, then T ′ = T \ {u} ∈
C(B), while if T ∩ U = ∅, then any w ∈ T is a cutpoint, hence T \ {w} ∈ C(B). ��
Proposition 4 Let B be a graph satisfying Setup 1. Then, JB is unmixed.

Proof We prove the statement by induction on r , the number of cycles in B.
If r = 1, then the claim follows. In fact, if D1 = C3, then B is a complete graph

with or without whiskers, hence JB is unmixed by [16, Proposition 2.6]. If D1 = C4,
then B has to satisfy the condition (6) in Setup 1, and the resulting graph is known to
be Cohen–Macaulay and hence unmixed.

Suppose r > 1. By induction hypothesis we have that JBk
is unmixed with Bk =⋃r

i=k Di and k > 1.
Assume D1 = C3 with V (D1) = {u0, u1, w1} and E(D1) ∩ E(D2) = {{w1, u1}}.

Let T ∈ C(B). Note that u0 can have a whisker on it, say {u0, f }. In this case, the graph
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B̄ is decomposable into H1 = {u0, f } and H2 = B̄ \ { f }. By [16, Proposition 2.6],
JB̄ is unmixed if and only if JH1 and JH2 are unmixed. Therefore, we can assume that
u0 has no whisker. If w1 /∈ T , then T is a cutset for B2 and by induction hypothesis
the assertion follows. We distinguish the following cases:

1. w1 ∈ T and u1 /∈ T ;
2. w1, u1 ∈ T .

(1) Assume w1 ∈ T and u1 /∈ T . If T is a cutset of B2 the number of connected
components does not change. In fact, by adding the graph C3 and removing the
vertex w1 we only obtain that the connected component of B2 \ T containing u1
now contains the graph D1 \ w1. If T /∈ C(B2), we claim that T ′ = T \ {w1} is a
cutset ofB2.We start observing that the connected component ofB2\T containing
u1 contains D1 \ {w1} in B \ T . Since by hypothesis for any a ∈ T ′ cB(T ) >

cB(T \ {a}) we have that cB2
(T ′) > cB2

(T ′ \ {a}), the claim follows. Hence, by
induction hypothesis, cB2

(T ′) = |T ′| + 1. Let H be the connected component

of B2 \ T ′ containing w1. By adding the vertex w1 to T ′, w1 disconnects H into
two connected components: the one containing u1 and the free vertex attached
to w1.

(2) If w1, u1 ∈ T , then there exists v ∈ V (B2) adjacent to u1 such that u1 breaks the
connected component H of B \ (T \ {u1}) containing u1 in two, one containing
v and one containing u0. By Setup 1 (7), since u1 has not whisker, then either
degB(u) is 3 and the vertices adjacent to u1 in B2 are w1 and u or degB(u) is
4 and the vertices adjacent to u1 in B2 are w1, w, and u for some u and w. In
the former case, since w1 ∈ T , then u /∈ T and v = u, otherwise u1 is a free
vertex in B \ (T \ {w1}), contradicting the fact that u1 ∈ T . In the latter case,
u, w ∈ V (D3). If {u, w} /∈ C(B2), then the claim follows. If {u, w} ∈ C(B2),
then {u, w} �⊂ T , otherwise u1 is a free vertex of B \ T . The claim follows.

Moreover, from Corollary 3, T ′ = T \ {u1} is a cutset of B such that w1 ∈ T ′ and
u1 /∈ T ′. By applying Case (1), we get that cB(T ′) = |T ′| + 1 and T ′ ∪ {u1} breaks
the component containing u1 in two: the vertex u0, and the component containing the
vertex v.

If D1 = C4 with V (D1) = {u0, w0, u1, w1}, then E(D1) ∩ E(D2) = {{w1, u1}}.
Let T ∈ C(B). Assume w0, w1 /∈ T , then T is a cutset for B2 and by induction
hypothesis the assertion follows. We now assume u0, u1 /∈ T and since {w0, u1} is the
unique cutset of B with cardinality 2 containing w0 and a ui , then the cases w0 ∈ T
and w1 /∈ T , w0 /∈ T and w1 ∈ T , w0, w1 ∈ T are analogous to the cases w1 /∈ T
and u1 ∈ T of D1 = C3. In fact, in all of the cases we obtain that T \ {w0} is a cutset
of B, that is cB(T \ {w0}) = |T \ {w0}| + 1 and the component containing u0 and
f0 is eventually broken by w0. We now assume u1 ∈ T . Observe that from Setup 1
(2) D2 = C3 and the vertex u ∈ U adjacent to u1 in B2 is such that {w1, u} ∈ E(B),
otherwise u0, w1, w2, u are all adjacent to u1 contradicting Setup 1 (7). That is either
w0 or w1 ∈ T , u /∈ T ; moreover, from Corollary 3 T \ {u1} is a cutset of B. From the
above cases, we obtain cB(T \ {u1}) = |T \ {u1}| + 1 and u1 breaks the component
containing u0 and u. If u0 ∈ T , then, by Lemma 13, w1 ∈ T and w0, u1 /∈ T ,
that is from Corollary 3 T \ {u0} is a cutset for B. By the previous cases we obtain
cB(T \ {u0}) = |T \ {u0}| + 1 and u0 breaks the component containing w0 and u1. ��
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Theorem 3 Let B be a graph. The following conditions are equivalent:

1. B satisfies Setup 1;
2. JB is Cohen–Macaulay;
3. S/JB is (S2);
4. B is accessible;
5. JB is strongly unmixed.

Proof We prove the following implications:

(5) �⇒ (2) �⇒ (3) �⇒ (4) �⇒ (1) �⇒ (5).

By [2, Theorem 5.11], it holds (5) �⇒ (2).
It is a well-known result that (2) �⇒ (3).
Theorem 2 states (3) �⇒ (4).
By Lemmas 7, 9, 8, 10, and observing that a C4 with 2 whiskers satisfying Setup 1 (5)
(or Setup 1 (6)) is accessible, we have (4) �⇒ (1).
To prove (1) �⇒ (5) we proceed by induction on the number s of cutpoints of B.

Let s = 1 and w be the cutpoint of B. Then, B is a cone from w to exactly 2
graphs: an isolated vertex and a path. By [16], JB is unmixed. Moreover B \ {w} is
decomposable into edges, therefore JB is strongly unmixed by Lemma 12, and Bw

and Bw \ {w} are complete graphs.
Suppose s > 1 and we focus on the cycle D1. Let w be the first cutpoint, namely

w = w0 if D1 = C4 or w = w1 if D1 = C3. We observe that B \ w = π ∪ Bt+1,
where π : u0, u1, . . . , ut is a path, {ut } = V (π) ∩ V (Bt+1), and Bt+1 = ⋃r

i=t+1 Di .
If Dt+1 = C3, then π ∪ Bt+1 is decomposable in ut . Note that Dt+1 cannot be a C4.
In fact, if by contradiction Dt+1 = C4, then Dt = C3 and ut−1, ut+1, w,wt are all
adjacent to ut . That is deg ut ≥ 4 obtaining a contradiction and the claim follows.
Therefore, by Lemma 12 and by induction hypothesis, JB\w is strongly unmixed.

Now we prove that JBw
is strongly unmixed, as well. Suppose Dt = C3 then

Bw = Kt+3 ∪ Bt+1 with V (Kt+3) ∩ V (Dt+1) = {wt , ut }. We observe that, by using
Lemma 11, the graph Kt+3 can be replaced by a K3 by eliminating t free vertices, and
K3 ∪ Bt+1 satisfies Setup 3 and has s − 1 cutpoints, that is the associated binomial
edge ideal is strongly unmixed by induction hypothesis. If Dt = C4 with V (Dt ) =
{wt−1, wt , ut−1, ut }, then Bw = Kt+3 ∪ D′

t ∪ Bt+1 where D′
t = C3, V (Kt+3) ∩

V (D′
t ) = {ut−1, wt } and V (Bt+1) ∩ V (D′

t ) = {wt , ut }. Again, we observe that, up to
applying Lemma 11 to the graph Kt+3, Bw satisfies Setup 1. By induction hypothesis,
the associated binomial edge ideal is strongly unmixed. It is straightforward to observe
that JBw\{w} is strongly unmixed, too. ��

6 Computation of graphs with n ∈ {2, . . . , 12} vertices
The main aim of this section is to prove, using a computational approach, that for
graphs G with at most 12 vertices, using Nauty [16], the three conditions, JG strongly
unmixed, JG Cohen–Macaulay, and G accessible, are equivalent as conjectured in [2].
Finally, we discuss some interesting examples obtained by direct computation.
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Table 1 Enumeration of indecomposable accessible graphs

n 2 3 4 5 6 7 8 9 10 11 12 Tot

Graphs 1 1 1 2 5 15 51 194 833 3824 19343 24270

Theorem 4 Let G be a graph on [n], with n ≤ 12. The following conditions are
equivalent:

1. JG is Cohen–Macaulay;
2. S/JG is (S2);
3. G is accessible;
4. JG is strongly unmixed.

Proof We know that

(4) �⇒ (1) �⇒ (2) �⇒ (3)

so, to prove the equivalence it is sufficient to show that (3) �⇒ (4).
To prove the claim, we have implemented a computer program that, for a fixed

number n of vertices, performs the following steps (steps (S2), (S3) and (S4) work on
the result of the previous step):

(S1) Compute all connected non isomorphic graphs on [n];
(S2) Thanks to Lemma 12, keep only the graphs which are indecomposable and
unmixed;
(S3) Keep only the ones that are accessible;
(S4) Keep only the ones that are strongly unmixed;
(S5) Verify that the graphs obtained from step (S3) and (S4) are the same.

The previous procedure was executed for the graphs whose number of vertices is
between 2 and 12. In Table 1, we report the number of indecomposable graphs on n
vertices that are also accessible.

Finally, we refer readers to [12] for a complete description of the algorithm that we
used. ��

We underline that the computation of the graphs with n = 12 vertices has been
obtained in a month of computation on a node with 4 CPU Xeon-Gold 5118 having
in total 48 cores and 96 threads. All the graphs satisfying the equivalent conditions of
Theorem 4 are downloadable from [12]. Within this set, we would like to focus on the
graphs shown in the following example.

Example 3 By direct computation, we obtain the two graphs in Fig. 6.
The graphs in Fig. 6A andB arewell known. In fact, the blocks that are not edges are

the so-called wheel graphs and they are denoted by W4 and W5, respectively, whereas
the blocks with whiskers are called Helm graphs (see [21]).

We observe that if i > 5 then JW i
is not unmixed. In fact, in this case we have at

least 6 vertices of degree 4, say v1, . . . , v6. Without loss of generality, we may assume
that {vi , vi+1} ∈ E(W i ), for i = 1, . . . , 5. Moreover, assume that v is the vertex of
degree i . We can see that T = {v, v1, v3, v5} is a cutset such that c(T ) = 6.
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(A) (B)

Fig. 6 The accessible W n

We recall the following definition.

Definition 5 A polyhedral graph is a 3-connected planar graph.

The name of polyhedral derives from the fact that it is the graph whose vertices and
edges are the ones of a convex polyhedron.

By Example 3 and Definition 5, it is natural to ask

Question 1 Is it possible to find an infinite family of accessible graphs B such that B
is a polyhedral graph?
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