Directional data lies on the surface of the unit sphere. Exploiting new results on the computation and the properties of the angular halfspace depth, we introduce the spherical version of the bagdistance, applicable to directional data. A bagdistance-based classification method for directional data is considered. The proposed method will be compared with other directional classifiers by means of a simulation study.

Angular halfspace depth: classification using spherical bagdistances

Houyem Demni
;
Davide Buttarazzi;Giovanni C. Porzio
2021-01-01

Abstract

Directional data lies on the surface of the unit sphere. Exploiting new results on the computation and the properties of the angular halfspace depth, we introduce the spherical version of the bagdistance, applicable to directional data. A bagdistance-based classification method for directional data is considered. The proposed method will be compared with other directional classifiers by means of a simulation study.
File in questo prodotto:
File Dimensione Formato  
8.pdf

accesso aperto

Descrizione: Contributo in volume
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 382.57 kB
Formato Adobe PDF
382.57 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/105485
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact