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ABSTRACT: Directional data lies on the surface of the unit sphere. Exploiting new
results on the computation and the properties of the angular halfspace depth, we in-
troduce the spherical version of the bagdistance, applicable to directional data. A
bagdistance-based classification method for directional data is considered. The pro-
posed method will be compared with other directional classifiers by means of a simu-
lation study.
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1 Introduction

Depth functions are nonparametric tools that assess how “centrally located”, or
“inner” is a point with respect to (w.r.t.) a given probability distribution. They
have been successfully adopted in supervised classification analysis. However,
many depths suffer when evaluating points that lie in the tails of the distribu-
tion. This is because the depth functions are typically not robust at their lowest
values, and also because they can easily assign constant zero depth to many
points when evaluated w.r.t. datasets (the so-called outsider issue). An ex-
ample of an important depth sharing all these shortcomings is the standard
halfspace depth defined in Euclidean spaces ℜq, q ≥ 1.

Contrary to the depths, distance functions are much more powerful when
dealing with points at the extremes of the distribution. Nevertheless, they gen-
erally suffer from robustness issues as well (unless some robustified versions

*The work of H. Demni and G.C. Porzio has been partially funded by the BiBiNet
project (grant H35F21000430002) within the POR-Lazio FESR 2014-2020. The work of S.
Nagy was supported by the grant 19-16097Y of the Czech Science Foundation, and by the
PRIMUS/17/SCI/3 project of Charles University.

are adopted), and for a fruitful use of the distances in classification, certain as-
sumptions on the data distribution typically need to be imposed (e.g., ellipticity
of the underlying distribution in the case of the Mahalanobis distance).

For these reasons, and to introduce a supervised classification rule for Eu-
clidean data, Hubert et al., 2017 proposed to combine the information from
these two approaches to obtain the so-called bagdistance, a function which
joins the depth and the distance to obtain a measure of how close/inner is a
point w.r.t. a given distribution. Bagdistances are robust, nonparametric, and
able to manage information in the tails of the distribution.

In this work, we introduce the bagdistance for directional data. To do
so, we use the angular halfspace depth, being the directional analogue of the
standard halfspace depth from ℜq. We also evaluate the performance of the
bagdistance within the setting of supervised classification for directional data.

Our short paper is organized as follows. Section 2 provides some back-
ground on the bagdistance in the Euclidean case, while in Section 3, the spher-
ical bagdistance and a directional classifier based on it are introduced.

2 The bagdistance for Euclidean data

Let Y be a random variable in ℜq with distribution PY , and let θ be its half-
space median (the point that maximizes the halfspace depth w.r.t. PY , or the
barycentre of the set of such points if not a singleton). Denote by B(Y ) ⊂ ℜq

the smallest halfspace depth central region of PY (i.e., an upper level set of the
halfspace depth of PY ) that contains at least 50 % of the PY -probability mass.
The bagdistance of x to Y is given by the ratio of the Euclidean distances of x
to θ , and c(x) to θ :

BD(x,PY ) :=

{
0 if c(x) = θ ,
‖x−θ‖/‖c(x)−θ‖ otherwise,

where c(x) is the intersection of the boundary of the bag B(Y ) and the ray from
the halfspace median θ passing through x.

3 The spherical bagdistance and a classification rule

Directional data can be viewed as realizations of a random variable X whose
support is the unit hyper-sphere S(q−1) := {x ∈ ℜq : ‖x‖= 1}. For directional
data, the spherical bagdistance can be introduced in complete analogy with the
bagdistance for Euclidean data.
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We first define the directional variant of the halfspace depth. Let X be a
directional random variable with distribution PX . The angular halfspace depth
ahD of a point x ∈ S(q−1) w.r.t. PX can be defined considering the collection
H0 of closed halfspaces in ℜq whose boundary contains the origin:

ahD(x,PX) := inf{PX(H) : H ∈ H0, x ∈ H} ∈ [0,1].

Denote by aB(X) ⊂ S(q−1) the angular bag of X , defined as the smallest
angular depth central region containing at least 50 % of the PX -probability
mass. Such a region always exists; its properties are detailed in the contribution
of P. Laketa and S. Nagy in the present book of short papers. The spherical
bagdistance from x ∈ S(q−1) to X is defined as the ratio of the arc distance
between x and the angular halfspace median θ̃ (a maximizer of the angular
halfspace depth of X), and the arc distance between caB(x) and θ̃ . Here, caB(x)
is the intersection between the boundary of the angular bag aB(X) and the
geodesic from θ̃ to x. Altogether, we define

SBD(x,PX) :=

{
0 if caB(x) = θ̃ ,
arccos(xTθ̃)/arccos(caB(x)Tθ̃) otherwise.

Similarly as the usual bagdistance in ℜq, the spherical bagdistance can be
exploited for supervised classification of directional objects. Formally, consid-
ering K directional distributions on S(q−1), a directional classifier is defined as
the function class : S(q−1) → {1, . . . ,K}. Given a training set composed of K
empirical distributions P̂Xi , i = 1, ...,K, the directional bagdistance classifier is
then defined as the rule classbag such that:

classbag(x) := u(SBD(x; P̂X1), ...,SBD(x; P̂Xi), ...,SBD(x; P̂XK )),

where u : ℜK → {1, ..., i, ...,K} is some discriminating function. That is, the
classifier is a rule defined on a Euclidean space given by the bagdistances of the
training set values w.r.t the directional distributions defined on a Riemannian
manifold. For the choice of the discriminating function, we refer to the lit-
erature available for depth based classifiers, which includes the linear (LDA),
quadratic (QDA) and k-NN classifiers (see e.g., Demni et al., 2021).

In line with such a strategy, a simulation study with data generated accord-
ing to a Kent distribution for each group has been performed. First results
are promising: the spherical bagdistance classifier reaches the same level of
correct classification as achieved by the empirical Bayes, at least under some
circumstances. To exemplify, boxplots of the misclassification rates of the pro-
posed classifier and of the empirical Bayes classifier under Kent are reported

in Figure 1. The two Kent distributions have equal locations and ovalness, and
different concentrations (the simulation setting described in Setup 2 in Demni
& Porzio, 2021 has been adopted). The training set size is 400 (200 from
each group), while the size of the testing set is 200; the number of replications
is 100. Misclassification errors are essentially equivalent, with some prefer-
ence to be given to the LDA and QDA solution. Performances under other
simulation settings and comparison with other directional classifiers are under
investigation.

Figure 1: Misclassification rates of the empirical Bayes under Kent (EBk), and
the spherical Bagdistance classifier (BD) when associated with the LDA, QDA,
and k-NN classification rule. Data generated according to Kent distributions.
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