In this paper, we deal with an inverse electrical conductivity problem which considers the reconstruction of nonlinear electrical conductivity in steady currents operations using boundary measurements. In the current set up, we establish a monotonic relation between the unknown material property to the (measured) Dirichlet-to-Neumann operator (DtN). It is in fact the Monotonicity Principle which is the base of a class of non-iterative and real-time imaging methods and algorithms. To be more precise, we indicate the issues appear in our nonlinear case to transfer this Monotonicity result from the Dirichlet Energy to the DtN operator which is the fundamental huddle in comparison to linear and p-Laplacian cases. Finally, we introduce a new Average DtN operator which is different from the existing ones and resolves complications produced by non-linearity in our problem

Monotonicity Principle for Tomography in Nonlinear Conducting Materials

Corbo Esposito A.;Faella L.;Piscitelli G.;Tamburrino A.
2023-01-01

Abstract

In this paper, we deal with an inverse electrical conductivity problem which considers the reconstruction of nonlinear electrical conductivity in steady currents operations using boundary measurements. In the current set up, we establish a monotonic relation between the unknown material property to the (measured) Dirichlet-to-Neumann operator (DtN). It is in fact the Monotonicity Principle which is the base of a class of non-iterative and real-time imaging methods and algorithms. To be more precise, we indicate the issues appear in our nonlinear case to transfer this Monotonicity result from the Dirichlet Energy to the DtN operator which is the fundamental huddle in comparison to linear and p-Laplacian cases. Finally, we introduce a new Average DtN operator which is different from the existing ones and resolves complications produced by non-linearity in our problem
File in questo prodotto:
File Dimensione Formato  
Faella _J._Phys.__Conf._Ser._2444_012004.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 684.08 kB
Formato Adobe PDF
684.08 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/97283
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
social impact