Networks provide suitable representative models in many applications, ranging from social to life sciences. Such representations are able to capture interactions and dependencies among variables or observations, thus providing simple and powerful modeling of phenomena. Whole-graph embedding involves the projection of graphs into a vector space, while retaining their structural properties. In recent years, several embedding techniques using graph kernels, matrix factorization, and deep learning architectures have been developed to learn low-dimensional graph representations. These embeddings can be used for feature extraction, graph clustering, or building classification models. In this chapter, we survey embedding techniques that jointly embed whole graphs for classification tasks. We compare them and evaluate their performance on undirected synthetic and real-world network datasets. The datasets and software adopted for our experiments are made publicly available for further comparisons.

On Whole-Graph Embedding Techniques

Mario Rosario Guarracino
2021-01-01

Abstract

Networks provide suitable representative models in many applications, ranging from social to life sciences. Such representations are able to capture interactions and dependencies among variables or observations, thus providing simple and powerful modeling of phenomena. Whole-graph embedding involves the projection of graphs into a vector space, while retaining their structural properties. In recent years, several embedding techniques using graph kernels, matrix factorization, and deep learning architectures have been developed to learn low-dimensional graph representations. These embeddings can be used for feature extraction, graph clustering, or building classification models. In this chapter, we survey embedding techniques that jointly embed whole graphs for classification tasks. We compare them and evaluate their performance on undirected synthetic and real-world network datasets. The datasets and software adopted for our experiments are made publicly available for further comparisons.
2021
978-3-030-73240-0
978-3-030-73241-7
File in questo prodotto:
File Dimensione Formato  
Biomat 2020.pdf

solo utenti autorizzati

Descrizione: Contributo in Atti di Convegno
Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 869.81 kB
Formato Adobe PDF
869.81 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/95710
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact