Random-coefficients linear models can be considered as a particular case of linear mixed models, in which the random effects depend on the model fixed- effects design matrix. A Redundancy Analysis of estimates of the multivariate random- effects may be able to capture the leading contribution to this correlation. Starting from the standardized multivariate best linear predictors, we introduce the random effects reduced space by a weighted least-squares closed-form solution. The application shows the effect of the linear dependence of the random-effects in the space of the predictor variables.

A Redundancy Analysis with Multivariate Random-Coefficients Linear Models

Laura Marcis;Maria Chiara Pagliarella;Renato Salvatore
2021-01-01

Abstract

Random-coefficients linear models can be considered as a particular case of linear mixed models, in which the random effects depend on the model fixed- effects design matrix. A Redundancy Analysis of estimates of the multivariate random- effects may be able to capture the leading contribution to this correlation. Starting from the standardized multivariate best linear predictors, we introduce the random effects reduced space by a weighted least-squares closed-form solution. The application shows the effect of the linear dependence of the random-effects in the space of the predictor variables.
2021
978-88-5518-340-6
File in questo prodotto:
File Dimensione Formato  
Book of short papers CLADAG2021.pdf

solo utenti autorizzati

Descrizione: Contributo in volume
Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 1.08 MB
Formato Adobe PDF
1.08 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/95688
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact