This paper considers an antenna structure where a (non-large) array of radiating elements is placed at short distance in front of a reconfigurable intelligent surface (RIS). We propose a channel estimation procedure using different configurations of the RIS elements and derive a closed-form expression for an achievable downlink spectral efficiency by using the popular hardening lower-bound. Next, we formulate an optimization problem, with respect to the phase shifts of the RIS, aimed at minimizing the channels cross-correlations while preserving the channels individual norms. The numerical analysis shows that the proposed structure is capable of overcoming the performance of a conventional massive MIMO system without the RIS.
RIS-aided Massive MIMO: Achieving Large Multiplexing Gains with non-Large Arrays
Buzzi S.
;D'Andrea C.;Interdonato G.
2021-01-01
Abstract
This paper considers an antenna structure where a (non-large) array of radiating elements is placed at short distance in front of a reconfigurable intelligent surface (RIS). We propose a channel estimation procedure using different configurations of the RIS elements and derive a closed-form expression for an achievable downlink spectral efficiency by using the popular hardening lower-bound. Next, we formulate an optimization problem, with respect to the phase shifts of the RIS, aimed at minimizing the channels cross-correlations while preserving the channels individual norms. The numerical analysis shows that the proposed structure is capable of overcoming the performance of a conventional massive MIMO system without the RIS.File | Dimensione | Formato | |
---|---|---|---|
RIS-aided_Massive_MIMO_Achieving_Large_Multiplexing_Gains_with_non-Large_Arrays.pdf
solo utenti autorizzati
Licenza:
Copyright dell'editore
Dimensione
1.58 MB
Formato
Adobe PDF
|
1.58 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.