Surface faulting is, together with strong ground shaking, a hazard associated with major earthquake faults. Assessing surface faulting potential of a given active tectonic structure is a fundamental prerequisite to adequately plan the use of territories and to perform new constructions, in order to act practices aimed to mitigate the associated risk. Assessing the surface faulting potential represents also ground for correctly performing re-construction and retrofitting of buildings and infrastructures during post-earthquake activities. We investigated a branch of a major seismogenic normal fault in the central Apennines of Italy, the Campi-Preci fault, along which the monumental Sant’Eutizio Abbey is located. The medieval Abbey is one of the most important cultural/religious edifices of the central Apennines, heavily damaged by the MW 6.5 October 30, 2016, earthquake, focused a few km to the south. Our study, based on field geological, geomorphological and structural survey and trenching investigations revealed that I) the trace of the Campi-Preci active fault branch is not actually located where presently reported in the available literature, II) the supposed morpho-tectonic features (basically, some km-long scarp carved on the Meso-Cenozoic carbonate bedrock), that suggested the presence of the fault segment in the area of the Sant’Eutizio Abbey, are not related to the active fault but are probably associated to a presently inactive reverse fault and III) the Sant’Eutizio Abbey is likely not potentially affected by primary surface faulting. Our work highlights that only a comprehensive multidisciplinary approach allows to correctly assess surface faulting potential in both seismotectonic and engineering perspectives.

Assessing active and capable faulting as best practice for post-earthquake reconstruction activities: the Sant’ Eutizio Abbey case study, in the epicentral area of the 2016 central Italy seismic sequence.

Maceroni Deborah
Methodology
;
Saroli Michele
Methodology
;
2022

Abstract

Surface faulting is, together with strong ground shaking, a hazard associated with major earthquake faults. Assessing surface faulting potential of a given active tectonic structure is a fundamental prerequisite to adequately plan the use of territories and to perform new constructions, in order to act practices aimed to mitigate the associated risk. Assessing the surface faulting potential represents also ground for correctly performing re-construction and retrofitting of buildings and infrastructures during post-earthquake activities. We investigated a branch of a major seismogenic normal fault in the central Apennines of Italy, the Campi-Preci fault, along which the monumental Sant’Eutizio Abbey is located. The medieval Abbey is one of the most important cultural/religious edifices of the central Apennines, heavily damaged by the MW 6.5 October 30, 2016, earthquake, focused a few km to the south. Our study, based on field geological, geomorphological and structural survey and trenching investigations revealed that I) the trace of the Campi-Preci active fault branch is not actually located where presently reported in the available literature, II) the supposed morpho-tectonic features (basically, some km-long scarp carved on the Meso-Cenozoic carbonate bedrock), that suggested the presence of the fault segment in the area of the Sant’Eutizio Abbey, are not related to the active fault but are probably associated to a presently inactive reverse fault and III) the Sant’Eutizio Abbey is likely not potentially affected by primary surface faulting. Our work highlights that only a comprehensive multidisciplinary approach allows to correctly assess surface faulting potential in both seismotectonic and engineering perspectives.
File in questo prodotto:
File Dimensione Formato  
Maceroni et al. Saroli 2022 AG Sant’ Eutizio Abbey rid .pdf

accesso aperto

Descrizione: Sant’ Eutizio Abbey rid
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.05 MB
Formato Adobe PDF
2.05 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11580/91799
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
social impact