Precipitation forecasting is essential for the assessment of several hydrological processes. This study shows that based on a machine learning approach, reliable models for precipitation prediction can be developed. The tropical monsoon-climate northern region of Bangladesh, including the Rangpur and Sylhet division, was chosen as the case study. Two machine learning algorithms were used: M5P and support vector regression. Moreover, a novel hybrid model based on the two algorithms was developed. The performance of prediction models was assessed by means of evaluation metrics and graphical representations. A sensitivity analysis was also carried out to assess the prediction accuracy as the number of exogenous inputs reduces and lag times increases. Overall, the hybrid model M5P-SVR led to the best predictions among used models in this study, with R2 values up to 0.87 and 0.92 for the stations of Rangpur and Sylhet, respectively.

Precipitation Forecasting in Northern Bangladesh Using a Hybrid Machine Learning Model

Di Nunno F.;Granata F.;de Marinis G.
2022-01-01

Abstract

Precipitation forecasting is essential for the assessment of several hydrological processes. This study shows that based on a machine learning approach, reliable models for precipitation prediction can be developed. The tropical monsoon-climate northern region of Bangladesh, including the Rangpur and Sylhet division, was chosen as the case study. Two machine learning algorithms were used: M5P and support vector regression. Moreover, a novel hybrid model based on the two algorithms was developed. The performance of prediction models was assessed by means of evaluation metrics and graphical representations. A sensitivity analysis was also carried out to assess the prediction accuracy as the number of exogenous inputs reduces and lag times increases. Overall, the hybrid model M5P-SVR led to the best predictions among used models in this study, with R2 values up to 0.87 and 0.92 for the stations of Rangpur and Sylhet, respectively.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/89228
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
social impact