Monitoring of aquatic ecosystems has been historically accomplished by intensive campaigns of direct measurements (by probes and other boat instruments) and indirect extensive methods such as aero-photogrammetry and satellite detection. These measurements characterized the research in the last century, with significant but limited improvements within those technological boundaries. The newest advances in the field of smart devices and increased networking capabilities provided by emerging tools, such as the Internet of Things (IoT), offer increasing opportunities to provide accurate and precise measurements over larger areas. These perspectives also correspond to an increasing need to promptly respond to frequent catastrophic impacts produced by drilling stations and intense transportation activities of dangerous materials over ocean routes. The shape of coastal ecosystems continuously varies due to increasing anthropic activities and climatic changes, aside from touristic activities, industrial impacts, and conservation practices. Smart buoy networks (SBNs), autonomous underwater vehicles (AUVs), and multi-sensor microsystems (MSMs) such as smart cable water (SCW) are able to learn specific patterns of ecological conditions, along with electronic “noses”, permitting them to set innovative low-cost monitoring stations reacting in real time to the signals of marine environments by autonomously adapting their monitoring programs and eventually sending alarm messages to prompt human intervention. These opportunities, according to multimodal scenarios, are dramatically changing both the coastal monitoring operations and the investigations over large oceanic areas by yielding huge amounts of information and partially computing them in order to provide intelligent responses. However, the major effects of these tools on the management of marine environments are still to be realized, and they are likely to become evident in the next decade. In this review, we examined from an ecological perspective the most striking innovations applied by various research groups around the world and analyzed their advantages and limits to depict scenarios of monitoring activities made possible for the next decade.

Management and Sustainable Exploitation of Marine Environments through Smart Monitoring and Automation

Gerevini L.;Molinara M.;Costantini M.
;
2022-01-01

Abstract

Monitoring of aquatic ecosystems has been historically accomplished by intensive campaigns of direct measurements (by probes and other boat instruments) and indirect extensive methods such as aero-photogrammetry and satellite detection. These measurements characterized the research in the last century, with significant but limited improvements within those technological boundaries. The newest advances in the field of smart devices and increased networking capabilities provided by emerging tools, such as the Internet of Things (IoT), offer increasing opportunities to provide accurate and precise measurements over larger areas. These perspectives also correspond to an increasing need to promptly respond to frequent catastrophic impacts produced by drilling stations and intense transportation activities of dangerous materials over ocean routes. The shape of coastal ecosystems continuously varies due to increasing anthropic activities and climatic changes, aside from touristic activities, industrial impacts, and conservation practices. Smart buoy networks (SBNs), autonomous underwater vehicles (AUVs), and multi-sensor microsystems (MSMs) such as smart cable water (SCW) are able to learn specific patterns of ecological conditions, along with electronic “noses”, permitting them to set innovative low-cost monitoring stations reacting in real time to the signals of marine environments by autonomously adapting their monitoring programs and eventually sending alarm messages to prompt human intervention. These opportunities, according to multimodal scenarios, are dramatically changing both the coastal monitoring operations and the investigations over large oceanic areas by yielding huge amounts of information and partially computing them in order to provide intelligent responses. However, the major effects of these tools on the management of marine environments are still to be realized, and they are likely to become evident in the next decade. In this review, we examined from an ecological perspective the most striking innovations applied by various research groups around the world and analyzed their advantages and limits to depict scenarios of monitoring activities made possible for the next decade.
File in questo prodotto:
File Dimensione Formato  
2022 - Evolutionary computation to implement an IoT-based system for water pollution detection.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Dominio pubblico
Dimensione 1.26 MB
Formato Adobe PDF
1.26 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/88477
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
social impact