Two natural zeolite-bearing rocks (one containing clinoptilolite and the other chabazite, phillipsite, and analcime) were Fe-exchanged and thermally treated in a reducing atmosphere at 750 °C for 2 h. Two nanocomposites, formed by the dispersion of Fe nanoparticles in a ceramic matrix, were obtained. The prepared lunar dust simulants also contain Na+, K+, Ca2+, and Mg2+ and other mineral phases originally present in the starting materials. The samples were fully characterized by different techniques such as atomic absorption spectrometry, X-ray powder diffraction, followed by Rietveld analysis, transmission electron microscopy, N2 adsorption/desorption analysis at 77 K, measurements of grain size distribution, magnetic property measurements, broad-band dielectric spectroscopy, and DC conductivity measurements. The results of this characterization showed that the obtained metal-ceramic nanocomposites exhibit a chemical and mineralogical composition and electrical and magnetic properties similar to real moon dust and, thus, appear valid moon dust simulants.

New insights in the production of simulated moon agglutinates: the use of natural zeolite-bearing rocks

Marocco A.;Pansini M.;
2021-01-01

Abstract

Two natural zeolite-bearing rocks (one containing clinoptilolite and the other chabazite, phillipsite, and analcime) were Fe-exchanged and thermally treated in a reducing atmosphere at 750 °C for 2 h. Two nanocomposites, formed by the dispersion of Fe nanoparticles in a ceramic matrix, were obtained. The prepared lunar dust simulants also contain Na+, K+, Ca2+, and Mg2+ and other mineral phases originally present in the starting materials. The samples were fully characterized by different techniques such as atomic absorption spectrometry, X-ray powder diffraction, followed by Rietveld analysis, transmission electron microscopy, N2 adsorption/desorption analysis at 77 K, measurements of grain size distribution, magnetic property measurements, broad-band dielectric spectroscopy, and DC conductivity measurements. The results of this characterization showed that the obtained metal-ceramic nanocomposites exhibit a chemical and mineralogical composition and electrical and magnetic properties similar to real moon dust and, thus, appear valid moon dust simulants.
File in questo prodotto:
File Dimensione Formato  
New Insights in the Production of Simulated Moon Agglutinates the.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 14.2 MB
Formato Adobe PDF
14.2 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/88213
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
social impact