Contaminated training sets can highly affect the performance of classification rules. For this reason, robust supervised classifiers have been introduced. Amongst the many, this work focuses on depth-based classifiers, a class of methods which have been proven to enjoy some robustness properties. However, no robustness studies are available for them within a directional data framework. Here, their performance under some directional contamination schemes is evaluated. A comparison with the directional Bayes rule is also provided. Different directional specific contamination scenarios are introduced and discussed: antipodality and orthogonality of the contaminated distribution mean, and the directional mean shift outlier model.

Distance-based directional depth classifiers: a robustness study

Demni H.;Porzio G. C.
2021-01-01

Abstract

Contaminated training sets can highly affect the performance of classification rules. For this reason, robust supervised classifiers have been introduced. Amongst the many, this work focuses on depth-based classifiers, a class of methods which have been proven to enjoy some robustness properties. However, no robustness studies are available for them within a directional data framework. Here, their performance under some directional contamination schemes is evaluated. A comparison with the directional Bayes rule is also provided. Different directional specific contamination scenarios are introduced and discussed: antipodality and orthogonality of the contaminated distribution mean, and the directional mean shift outlier model.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/88209
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
social impact