Contaminated training sets can highly affect the performance of classification rules. For this reason, robust supervised classifiers have been introduced. Amongst the many, this work focuses on depth-based classifiers, a class of methods which have been proven to enjoy some robustness properties. However, no robustness studies are available for them within a directional data framework. Here, their performance under some directional contamination schemes is evaluated. A comparison with the directional Bayes rule is also provided. Different directional specific contamination scenarios are introduced and discussed: antipodality and orthogonality of the contaminated distribution mean, and the directional mean shift outlier model.

Distance-based directional depth classifiers: a robustness study

Demni Houyem;Porzio Giovanni Camillo
2021-01-01

Abstract

Contaminated training sets can highly affect the performance of classification rules. For this reason, robust supervised classifiers have been introduced. Amongst the many, this work focuses on depth-based classifiers, a class of methods which have been proven to enjoy some robustness properties. However, no robustness studies are available for them within a directional data framework. Here, their performance under some directional contamination schemes is evaluated. A comparison with the directional Bayes rule is also provided. Different directional specific contamination scenarios are introduced and discussed: antipodality and orthogonality of the contaminated distribution mean, and the directional mean shift outlier model.
File in questo prodotto:
File Dimensione Formato  
Demni_Messaoud_Porzio_2021_Communications_in_Statistics.pdf

solo utenti autorizzati

Descrizione: Articolo in rivista
Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 3.08 MB
Formato Adobe PDF
3.08 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/88209
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
social impact