Energy-efficient resource allocation in multiple-antenna wiretap channels is investigated, subject to maximum power and minimum secrecy capacity/rate constraints. Two energy-efficient metrics are optimized, namely the secrecy energy efficiency, defined as the ratio between the system secrecy capacity and the consumed power, and the secret-key energy efficiency, defined as the ratio between the system secret-key capacity and the consumed power. If the legitimate receiver and the eavesdropper have a single antenna, and the transmitter has multiple antennas, the global solution can be expressed by a simple formula that requires negligible complexity to be computed. Instead, if all nodes have multiple-antennas, provably convergent and computationally-friendly iterative algorithms are provided, which are able to determine the global maximum of the secret-key energy efficiency and candidate solutions of the secrecy energy efficiency maximization problem. Numerical results assess the performance of the proposed methods.

Optimal Energy-Efficient Design of Confidential Multiple-Antenna Systems

Zappone A.
;
2018-01-01

Abstract

Energy-efficient resource allocation in multiple-antenna wiretap channels is investigated, subject to maximum power and minimum secrecy capacity/rate constraints. Two energy-efficient metrics are optimized, namely the secrecy energy efficiency, defined as the ratio between the system secrecy capacity and the consumed power, and the secret-key energy efficiency, defined as the ratio between the system secret-key capacity and the consumed power. If the legitimate receiver and the eavesdropper have a single antenna, and the transmitter has multiple antennas, the global solution can be expressed by a simple formula that requires negligible complexity to be computed. Instead, if all nodes have multiple-antennas, provably convergent and computationally-friendly iterative algorithms are provided, which are able to determine the global maximum of the secret-key energy efficiency and candidate solutions of the secrecy energy efficiency maximization problem. Numerical results assess the performance of the proposed methods.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/87795
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
social impact