This paper proposes an optimal strategy to parallelize the solution of large 3D magneto-quasi-static (MQS) problems, by combining the MPI and OpenMP approaches. The studied numerical problem comes from a weak-form integral formulation of a MQS problem and is finally cast in terms of a large linear system to be solved by means of a direct method. For this purpose, two main tasks are identified: the assembly and the inversion of the matrices. The paper focuses on the optimization of the resources required for assembling the matrices, by exploiting the feature of a hybrid OpenMP–MPI approach. Specifically, the job is shared between clusters of nodes in parallel by adopting an OpenMP paradigm at the node level and a MPI one at the process level between nodes. Compared with other solutions, such as pure MPI, this hybrid parallelization optimizes the available resources, with respect to the speed, allocated memory, and the communication between nodes. These advantages are clearly observed in the case studies analyzed in this paper, coming from the study of large plasma fusion machines, such as the fusion reactor ITER. Indeed, the MQS problems associated with such applications are characterized by a huge computational cost that requires parallel computing approaches.

Fast and Accurate Solution of Integral Formulations of Large MQS Problems Based on Hybrid OpenMP–MPI Parallelization

Ventre S.
Validation
;
Chiariello A.
Investigation
;
Giovinco G.
Investigation
;
Maffucci A.
Methodology
;
Villone F.
Conceptualization
2022-01-01

Abstract

This paper proposes an optimal strategy to parallelize the solution of large 3D magneto-quasi-static (MQS) problems, by combining the MPI and OpenMP approaches. The studied numerical problem comes from a weak-form integral formulation of a MQS problem and is finally cast in terms of a large linear system to be solved by means of a direct method. For this purpose, two main tasks are identified: the assembly and the inversion of the matrices. The paper focuses on the optimization of the resources required for assembling the matrices, by exploiting the feature of a hybrid OpenMP–MPI approach. Specifically, the job is shared between clusters of nodes in parallel by adopting an OpenMP paradigm at the node level and a MPI one at the process level between nodes. Compared with other solutions, such as pure MPI, this hybrid parallelization optimizes the available resources, with respect to the speed, allocated memory, and the communication between nodes. These advantages are clearly observed in the case studies analyzed in this paper, coming from the study of large plasma fusion machines, such as the fusion reactor ITER. Indeed, the MQS problems associated with such applications are characterized by a huge computational cost that requires parallel computing approaches.
File in questo prodotto:
File Dimensione Formato  
applsci-12-00627.pdf

accesso aperto

Descrizione: articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.7 MB
Formato Adobe PDF
1.7 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/87605
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
social impact