Today, the hydrogen is considered an essential element in speeding up the energy transition and generate important environmental benefits. Not all hydrogen is the same, though. The “green hydrogen”, which is produced using renewable energy and electrolysis to split water, is really and completely sustainable for stationary and mobile applications. This paper is focused on the techno-economic analysis of an on-site hydrogen refueling station (HRS) in which the green hydrogen production is assured by a PV plant that supplies electricity to an alkaline electrolyzer. The hydrogen is stored in low pressure tanks (200 bar) and then is compressed at 900 bar for refueling FCHVs by using the innovative technology of the ionic compressor. From technical point of view, the components of the HRS have been sized for assuring a maximum capacity of 450 kg/day. In particular, the PV plant (installed in the south of Italy) has a size of 8MWp and supplies an alkaline electrolyzer of 2.1 MW. A Li-ion battery system (size 3.5 MWh) is used to store the electricity surplus and the grid-connection of the PV plant allows to export the electricity excess that cannot be stored in the battery system. The economic analysis has been performed by estimating the levelized cost of hydrogen (LCOH) that is an important economic indicator based on the evaluation of investment, operational & maintenance and replacement costs. Results highlighted that the proposed on-site configuration in which the green hydrogen production is assured, is characterized by a LCOH of 10.71 €/kg

On-site solar powered refueling stations for green hydrogen production and distribution: performances and costs

Alessandra Perna;
2022-01-01

Abstract

Today, the hydrogen is considered an essential element in speeding up the energy transition and generate important environmental benefits. Not all hydrogen is the same, though. The “green hydrogen”, which is produced using renewable energy and electrolysis to split water, is really and completely sustainable for stationary and mobile applications. This paper is focused on the techno-economic analysis of an on-site hydrogen refueling station (HRS) in which the green hydrogen production is assured by a PV plant that supplies electricity to an alkaline electrolyzer. The hydrogen is stored in low pressure tanks (200 bar) and then is compressed at 900 bar for refueling FCHVs by using the innovative technology of the ionic compressor. From technical point of view, the components of the HRS have been sized for assuring a maximum capacity of 450 kg/day. In particular, the PV plant (installed in the south of Italy) has a size of 8MWp and supplies an alkaline electrolyzer of 2.1 MW. A Li-ion battery system (size 3.5 MWh) is used to store the electricity surplus and the grid-connection of the PV plant allows to export the electricity excess that cannot be stored in the battery system. The economic analysis has been performed by estimating the levelized cost of hydrogen (LCOH) that is an important economic indicator based on the evaluation of investment, operational & maintenance and replacement costs. Results highlighted that the proposed on-site configuration in which the green hydrogen production is assured, is characterized by a LCOH of 10.71 €/kg
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/86856
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact