Buildings are responsible for over 30% of global final energy consumption and nearly 40% of total CO2emissions. Thus, rapid penetration of renewable energy technologies (RETs) in this sector is required. Integration of renewable energy sources (RESs) into residential buildings should not only guarantee an overall neutral energy balance over long term horizon (nZEB concept), but also provide a higher flexibility, a real-time monitoring and a real time interaction with end-users (smart-building concept). Thus, increasing interest is being given to the concepts of Hybrid Renewable Energy Systems (HRES) and Multi-Energy Buildings, in which several renewable and nonrenewable energy systems, the energy networks and the energy demand optimally interact with each other at various levels, exploring all possible interactions between systems and vectors (electricity, heat, cooling, fuels, transport) without them being treated separately. In this context, the present paper gives an overview of functional integration of HRES in Multi-Energy Buildings evidencing the numerous problems and potentialities related to the application of HRESs in the residential building sector. Buildingintegrated HRESs with at least two RESs (i.e., wind-solar, solar-geothermal and solar-biomass) are considered. The most applied HRES solutions in the residential sector are presented, and integration of HRES with thermal and electrical loads in residential buildings connected to external multiple energy grids is investigated. Attention is focused on the potentialities that functional integration can offer in terms of flexibility services to the energy grids. New holistic approaches to the management problems and more complex architectures for the optimal control are described.

An overview on functional integration of hybrid renewable energy systems in multi-energy buildings

Canale L.;Di Fazio A. R.;Russo M.;Frattolillo A.;Dell'Isola M.
2021-01-01

Abstract

Buildings are responsible for over 30% of global final energy consumption and nearly 40% of total CO2emissions. Thus, rapid penetration of renewable energy technologies (RETs) in this sector is required. Integration of renewable energy sources (RESs) into residential buildings should not only guarantee an overall neutral energy balance over long term horizon (nZEB concept), but also provide a higher flexibility, a real-time monitoring and a real time interaction with end-users (smart-building concept). Thus, increasing interest is being given to the concepts of Hybrid Renewable Energy Systems (HRES) and Multi-Energy Buildings, in which several renewable and nonrenewable energy systems, the energy networks and the energy demand optimally interact with each other at various levels, exploring all possible interactions between systems and vectors (electricity, heat, cooling, fuels, transport) without them being treated separately. In this context, the present paper gives an overview of functional integration of HRES in Multi-Energy Buildings evidencing the numerous problems and potentialities related to the application of HRESs in the residential building sector. Buildingintegrated HRESs with at least two RESs (i.e., wind-solar, solar-geothermal and solar-biomass) are considered. The most applied HRES solutions in the residential sector are presented, and integration of HRES with thermal and electrical loads in residential buildings connected to external multiple energy grids is investigated. Attention is focused on the potentialities that functional integration can offer in terms of flexibility services to the energy grids. New holistic approaches to the management problems and more complex architectures for the optimal control are described.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/85413
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
social impact