In this study we show that concept of backward bifurcation, borrowed from epidemics, can be fruitfully exploited to shed light on the mechanism underlying the occurrence of hysteresis in marketing and for the strategic planning of adequate tools for its control. We enrich the model introduced in [Gaurav et al., 2019] with the mechanism of self-information that accounts for information about the product performance basing on consumers’ experience on the recent past. We obtain conditions for which the model exhibits a forward or a backward phenomenology and evaluate the impact of self-information on both these scenarios. Our analysis suggests that, even if hysteretic dynamics in referral campaigns is intimately linked to the mechanism of referrals, an adequate level of self-information and a fairly high level of customer-satisfaction can act as strategic tools to manage hysteresis and allow the campaign to spread in more controllable conditions.

Handling Hysteresis in a Referral Marketing Campaign with Self-Information. Hints from Epidemics.

Lacitignola, deborah
2021-01-01

Abstract

In this study we show that concept of backward bifurcation, borrowed from epidemics, can be fruitfully exploited to shed light on the mechanism underlying the occurrence of hysteresis in marketing and for the strategic planning of adequate tools for its control. We enrich the model introduced in [Gaurav et al., 2019] with the mechanism of self-information that accounts for information about the product performance basing on consumers’ experience on the recent past. We obtain conditions for which the model exhibits a forward or a backward phenomenology and evaluate the impact of self-information on both these scenarios. Our analysis suggests that, even if hysteretic dynamics in referral campaigns is intimately linked to the mechanism of referrals, an adequate level of self-information and a fairly high level of customer-satisfaction can act as strategic tools to manage hysteresis and allow the campaign to spread in more controllable conditions.
File in questo prodotto:
File Dimensione Formato  
Lacitignola_Mathematics_2021_online_version.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: DRM non definito
Dimensione 423.48 kB
Formato Adobe PDF
423.48 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/83348
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
social impact