We study necessary and sufficient conditions for the lower-semicontinuity of one-dimensional energies defined on (BV and) SBV of the model form F(u) = sup f(u') V sup ([u]), and prove a relaxation theorem. We apply these results to the study of problems with Dirichlet boundary conditions, highlighting a complex behaviour of solutions. We draw a comparison with the parallel theory for integral energies on SBV.
L^infinity energies on discontinuous functions
ALICANDRO, Roberto;
2005-01-01
Abstract
We study necessary and sufficient conditions for the lower-semicontinuity of one-dimensional energies defined on (BV and) SBV of the model form F(u) = sup f(u') V sup ([u]), and prove a relaxation theorem. We apply these results to the study of problems with Dirichlet boundary conditions, highlighting a complex behaviour of solutions. We draw a comparison with the parallel theory for integral energies on SBV.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.