In the present study, a strategy to assess liquefaction risk of road infrastructures has been proposed, as combination of liquefaction hazard, infrastructures vulnerability and exposure of transportation network. The proposed methodology includes a capacity analysis of the road network performed on both pre- and post-liquefaction scenarios to evaluate the social cost in terms of delay cost suffered by the transportation system. The approach has been applied to the municipality of Terre del Reno (Italy), that in 2012 suffered a severe seismic sequence that induced extensive liquefaction evidences over the territory. A multi-layer database, on a Geographical Information Systems (GIS) platform, has been created, with the aim to overlap information about subsoil, earthquake intensity, groundwater depth and road network configuration. The Vulnerability of road has been evaluated by the settlements of embankment on liquefied soils and, according to the damage level occurred, a loss of functionality has been assigned. Finally, performing a transportation analysis, the effects on the traffic conditions have been evaluated in terms of Total Delay Cost, suffer by the road users. Preliminary results showed a redistribution of the traffic flows caused by the service loss of crucial road sections due to the liquefaction evidences on the transportation network and the related Total Delay Cost has been quantified.
Simplified approach for liquefaction risk assessment of transportation systems: preliminary outcomes
Mauro D’Apuzzo
;Azzurra Evangelisti;Giuseppe Modoni;Rose-Line Spacagna;Luca Paolella;Daniela Santilli
;
2020-01-01
Abstract
In the present study, a strategy to assess liquefaction risk of road infrastructures has been proposed, as combination of liquefaction hazard, infrastructures vulnerability and exposure of transportation network. The proposed methodology includes a capacity analysis of the road network performed on both pre- and post-liquefaction scenarios to evaluate the social cost in terms of delay cost suffered by the transportation system. The approach has been applied to the municipality of Terre del Reno (Italy), that in 2012 suffered a severe seismic sequence that induced extensive liquefaction evidences over the territory. A multi-layer database, on a Geographical Information Systems (GIS) platform, has been created, with the aim to overlap information about subsoil, earthquake intensity, groundwater depth and road network configuration. The Vulnerability of road has been evaluated by the settlements of embankment on liquefied soils and, according to the damage level occurred, a loss of functionality has been assigned. Finally, performing a transportation analysis, the effects on the traffic conditions have been evaluated in terms of Total Delay Cost, suffer by the road users. Preliminary results showed a redistribution of the traffic flows caused by the service loss of crucial road sections due to the liquefaction evidences on the transportation network and the related Total Delay Cost has been quantified.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.