Contactless charging systems are becoming the most convenient and safest way to refill Electric Vehicles (EVs) batteries. Wireless Power Transfer (WPT) has been successfully adopted in EVs high power applications to efficiently deliver energy over a relatively large air gap. In order to predict the realistic performance of an EV wireless charger, the impact of real components tolerances and semiconductor devices losses must be considered. In this paper, a model for the analysis of the influence of semiconductor devices losses and of resonant devices parameters uncertainty is discussed. The model is validated through PSIM simulations of a 3.7kW/85kHz WPT system.

A losses-based Analysis for Electric Vehicle Wireless Chargers

DI CAPUA, GIULIA;
2015-01-01

Abstract

Contactless charging systems are becoming the most convenient and safest way to refill Electric Vehicles (EVs) batteries. Wireless Power Transfer (WPT) has been successfully adopted in EVs high power applications to efficiently deliver energy over a relatively large air gap. In order to predict the realistic performance of an EV wireless charger, the impact of real components tolerances and semiconductor devices losses must be considered. In this paper, a model for the analysis of the influence of semiconductor devices losses and of resonant devices parameters uncertainty is discussed. The model is validated through PSIM simulations of a 3.7kW/85kHz WPT system.
2015
978-1-4673-9184-9
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/80810
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
social impact