The main goal of supervised learning is to construct a function from labeled training data which assigns arbitrary new data points to one of the labels. Classification tasks may be solved by using some measures of data point centrality with respect to the labeled groups considered. Such a measure of centrality is called data depth. In this paper, we investigate conditions under which depth-based classifiers for directional data are optimal. We show that such classifiers are equivalent to the Bayes (optimal) classifier when the considered distributions are rotationally symmetric, unimodal, differ only in location and have equal priors. The necessity of such assumptions is also discussed.

On the Optimality of the Max-Depth and Max-Rank Classifiers for Spherical Data

Demni H.;Porzio G. C.
2020-01-01

Abstract

The main goal of supervised learning is to construct a function from labeled training data which assigns arbitrary new data points to one of the labels. Classification tasks may be solved by using some measures of data point centrality with respect to the labeled groups considered. Such a measure of centrality is called data depth. In this paper, we investigate conditions under which depth-based classifiers for directional data are optimal. We show that such classifiers are equivalent to the Bayes (optimal) classifier when the considered distributions are rotationally symmetric, unimodal, differ only in location and have equal priors. The necessity of such assumptions is also discussed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/79489
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
social impact