Investigating how classifiers perform under some data contaminations is an important issue in robustness studies. While some research is available on the robustness of classifiers, a little is known about directional classifiers. This work thus investigates the robustness of the cosine depth distribution classifier, a classification technique recently introduced for directional data. This latter is a non-parametric method and it is based on the distribution function of the cosine depth.

On the robustness of the cosine distribution depth classifier

Houyem Demni
;
Giovanni C. Porzio
2019-01-01

Abstract

Investigating how classifiers perform under some data contaminations is an important issue in robustness studies. While some research is available on the robustness of classifiers, a little is known about directional classifiers. This work thus investigates the robustness of the cosine depth distribution classifier, a classification technique recently introduced for directional data. This latter is a non-parametric method and it is based on the distribution function of the cosine depth.
2019
978-88-8317-108-6
File in questo prodotto:
File Dimensione Formato  
Demni et.al2019_Inproceedings.pdf

accesso aperto

Descrizione: Contributo in Atti di Convegno
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 110.38 kB
Formato Adobe PDF
110.38 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/79474
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact