A novel mathematical formulation is presented for the applications of the stress-driven nonlocal theory of elasticity to engineering nano-scale problems requiring longitudinal discretization. Specifically, a differential formulation accompanied with novel constitutive continuity conditions is provided for determining exact closed-form solutions of nonlocal Euler-Bernoulli beams with loading discontinuities, i.e. points of discontinuity for external loads and internal forces. Constitutive continuity conditions have to be satisfied in interior points where a loading discontinuity occurs and contain integral convolutions of the stress over suitable parts of the nonlocal beam. Several results show the effectiveness of the proposed method.
Exact closed-form solutions for nonlocal beams with loading discontinuities
Caporale A.;
2022-01-01
Abstract
A novel mathematical formulation is presented for the applications of the stress-driven nonlocal theory of elasticity to engineering nano-scale problems requiring longitudinal discretization. Specifically, a differential formulation accompanied with novel constitutive continuity conditions is provided for determining exact closed-form solutions of nonlocal Euler-Bernoulli beams with loading discontinuities, i.e. points of discontinuity for external loads and internal forces. Constitutive continuity conditions have to be satisfied in interior points where a loading discontinuity occurs and contain integral convolutions of the stress over suitable parts of the nonlocal beam. Several results show the effectiveness of the proposed method.File | Dimensione | Formato | |
---|---|---|---|
Caporale 2020 - Exact closed-form solutions for nonlocal beams with loading discontinuities - final version.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
2.45 MB
Formato
Adobe PDF
|
2.45 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.