In the last decades, the combination of high mechanical performances and low production costs increased the industrial interest on ductile cast irons. These grades are often used for applications where the fatigue resistance can be a critical issue (eg, machine frames for the wind‐power industry or crankshaft used in trucks) and the investigation of the main damaging mechanisms during both the crack initiation and the crack propagation stage could offer new perspectives about these alloys. Ductile cast irons can be considered as a natural composite, being characterized by graphite elements (nodules) embedded in a more or less ductile matrix (ranging from fully ferritic to pearlitic, from martensitic to austempered). In this work, the fatigue crack initiation mechanisms were investigated considering different matrix microstructure and the presence of a mechanical properties gradient in the graphite nodules

Ductile cast irons: Microstructure influence on the fatigue initiation mechanisms

C. Bellini;V. Di Cocco;F. Iacoviello
;
L. Sorrentino
2019-01-01

Abstract

In the last decades, the combination of high mechanical performances and low production costs increased the industrial interest on ductile cast irons. These grades are often used for applications where the fatigue resistance can be a critical issue (eg, machine frames for the wind‐power industry or crankshaft used in trucks) and the investigation of the main damaging mechanisms during both the crack initiation and the crack propagation stage could offer new perspectives about these alloys. Ductile cast irons can be considered as a natural composite, being characterized by graphite elements (nodules) embedded in a more or less ductile matrix (ranging from fully ferritic to pearlitic, from martensitic to austempered). In this work, the fatigue crack initiation mechanisms were investigated considering different matrix microstructure and the presence of a mechanical properties gradient in the graphite nodules
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/75978
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
social impact